14 research outputs found

    Unsupervised Learning of Disentangled Representations from Video

    Full text link
    We present a new model DrNET that learns disentangled image representations from video. Our approach leverages the temporal coherence of video and a novel adversarial loss to learn a representation that factorizes each frame into a stationary part and a temporally varying component. The disentangled representation can be used for a range of tasks. For example, applying a standard LSTM to the time-vary components enables prediction of future frames. We evaluate our approach on a range of synthetic and real videos, demonstrating the ability to coherently generate hundreds of steps into the future

    Stable Distribution Alignment Using the Dual of the Adversarial Distance

    Full text link
    Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.Comment: ICLR 2018 Conference Invite to Worksho

    Probabilistic Video Generation using Holistic Attribute Control

    Full text link
    Videos express highly structured spatio-temporal patterns of visual data. A video can be thought of as being governed by two factors: (i) temporally invariant (e.g., person identity), or slowly varying (e.g., activity), attribute-induced appearance, encoding the persistent content of each frame, and (ii) an inter-frame motion or scene dynamics (e.g., encoding evolution of the person ex-ecuting the action). Based on this intuition, we propose a generative framework for video generation and future prediction. The proposed framework generates a video (short clip) by decoding samples sequentially drawn from a latent space distribution into full video frames. Variational Autoencoders (VAEs) are used as a means of encoding/decoding frames into/from the latent space and RNN as a wayto model the dynamics in the latent space. We improve the video generation consistency through temporally-conditional sampling and quality by structuring the latent space with attribute controls; ensuring that attributes can be both inferred and conditioned on during learning/generation. As a result, given attributes and/orthe first frame, our model is able to generate diverse but highly consistent sets ofvideo sequences, accounting for the inherent uncertainty in the prediction task. Experimental results on Chair CAD, Weizmann Human Action, and MIT-Flickr datasets, along with detailed comparison to the state-of-the-art, verify effectiveness of the framework

    Improving Performance of Seen and Unseen Speech Style Transfer in End-to-end Neural TTS

    Full text link
    End-to-end neural TTS training has shown improved performance in speech style transfer. However, the improvement is still limited by the training data in both target styles and speakers. Inadequate style transfer performance occurs when the trained TTS tries to transfer the speech to a target style from a new speaker with an unknown, arbitrary style. In this paper, we propose a new approach to style transfer for both seen and unseen styles, with disjoint, multi-style datasets, i.e., datasets of different styles are recorded, each individual style is by one speaker with multiple utterances. To encode the style information, we adopt an inverse autoregressive flow (IAF) structure to improve the variational inference. The whole system is optimized to minimize a weighed sum of four different loss functions: 1) a reconstruction loss to measure the distortions in both source and target reconstructions; 2) an adversarial loss to "fool" a well-trained discriminator; 3) a style distortion loss to measure the expected style loss after the transfer; 4) a cycle consistency loss to preserve the speaker identity of the source after the transfer. Experiments demonstrate, both objectively and subjectively, the effectiveness of the proposed approach for seen and unseen style transfer tasks. The performance of the new approach is better and more robust than those of four baseline systems of the prior art

    Product of Orthogonal Spheres Parameterization for Disentangled Representation Learning

    Full text link
    Learning representations that can disentangle explanatory attributes underlying the data improves interpretabilty as well as provides control on data generation. Various learning frameworks such as VAEs, GANs and auto-encoders have been used in the literature to learn such representations. Most often, the latent space is constrained to a partitioned representation or structured by a prior to impose disentangling. In this work, we advance the use of a latent representation based on a product space of Orthogonal Spheres PrOSe. The PrOSe model is motivated by the reasoning that latent-variables related to the physics of image-formation can under certain relaxed assumptions lead to spherical-spaces. Orthogonality between the spheres is motivated via physical independence models. Imposing the orthogonal-sphere constraint is much simpler than other complicated physical models, is fairly general and flexible, and extensible beyond the factors used to motivate its development. Under further relaxed assumptions of equal-sized latent blocks per factor, the constraint can be written down in closed form as an ortho-normality term in the loss function. We show that our approach improves the quality of disentanglement significantly. We find consistent improvement in disentanglement compared to several state-of-the-art approaches, across several benchmarks and metrics.Comment: Accepted at British Machine Vision Conference (BMVC) 201

    Learning Latent Subspaces in Variational Autoencoders

    Full text link
    Variational autoencoders (VAEs) are widely used deep generative models capable of learning unsupervised latent representations of data. Such representations are often difficult to interpret or control. We consider the problem of unsupervised learning of features correlated to specific labels in a dataset. We propose a VAE-based generative model which we show is capable of extracting features correlated to binary labels in the data and structuring it in a latent subspace which is easy to interpret. Our model, the Conditional Subspace VAE (CSVAE), uses mutual information minimization to learn a low-dimensional latent subspace associated with each label that can easily be inspected and independently manipulated. We demonstrate the utility of the learned representations for attribute manipulation tasks on both the Toronto Face and CelebA datasets.Comment: Published as a conference paper at NeurIPS 2018. 15 page

    Image Generation from Layout

    Full text link
    Despite significant recent progress on generative models, controlled generation of images depicting multiple and complex object layouts is still a difficult problem. Among the core challenges are the diversity of appearance a given object may possess and, as a result, exponential set of images consistent with a specified layout. To address these challenges, we propose a novel approach for layout-based image generation; we call it Layout2Im. Given the coarse spatial layout (bounding boxes + object categories), our model can generate a set of realistic images which have the correct objects in the desired locations. The representation of each object is disentangled into a specified/certain part (category) and an unspecified/uncertain part (appearance). The category is encoded using a word embedding and the appearance is distilled into a low-dimensional vector sampled from a normal distribution. Individual object representations are composed together using convolutional LSTM, to obtain an encoding of the complete layout, and then decoded to an image. Several loss terms are introduced to encourage accurate and diverse generation. The proposed Layout2Im model significantly outperforms the previous state of the art, boosting the best reported inception score by 24.66% and 28.57% on the very challenging COCO-Stuff and Visual Genome datasets, respectively. Extensive experiments also demonstrate our method's ability to generate complex and diverse images with multiple objects.Comment: Accepted to CVPR 2019 (Oral

    Unsupervised Domain Alignment to Mitigate Low Level Dataset Biases

    Full text link
    Dataset bias is a well-known problem in the field of computer vision. The presence of implicit bias in any image collection hinders a model trained and validated on a particular dataset to yield similar accuracies when tested on other datasets. In this paper, we propose a novel debiasing technique to reduce the effects of a biased training dataset. Our goal is to augment the training data using a generative network by learning a non-linear mapping from the source domain (training set) to the target domain (testing set) while retaining training set labels. The cycle consistency loss and adversarial loss for generative adversarial networks are used to learn the mapping. A structured similarity index (SSIM) loss is used to enforce label retention while augmenting the training set. Our methods and hypotheses are supported by quantitative comparisons with prior debiasing techniques. These comparisons showcase the superiority of our method and its potential to mitigate the effects of dataset bias during the inference stage.Comment: 10 pages, 4 figures, 6 tables, submitted to ICAAI 201

    Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for Factor Disentanglement

    Full text link
    We propose a family of novel hierarchical Bayesian deep auto-encoder models capable of identifying disentangled factors of variability in data. While many recent attempts at factor disentanglement have focused on sophisticated learning objectives within the VAE framework, their choice of a standard normal as the latent factor prior is both suboptimal and detrimental to performance. Our key observation is that the disentangled latent variables responsible for major sources of variability, the relevant factors, can be more appropriately modeled using long-tail distributions. The typical Gaussian priors are, on the other hand, better suited for modeling of nuisance factors. Motivated by this, we extend the VAE to a hierarchical Bayesian model by introducing hyper-priors on the variances of Gaussian latent priors, mimicking an infinite mixture, while maintaining tractable learning and inference of the traditional VAEs. This analysis signifies the importance of partitioning and treating in a different manner the latent dimensions corresponding to relevant factors and nuisances. Our proposed models, dubbed Bayes-Factor-VAEs, are shown to outperform existing methods both quantitatively and qualitatively in terms of latent disentanglement across several challenging benchmark tasks.Comment: International Conference on Computer Vision (ICCV) 201

    Towards Better Understanding of Disentangled Representations via Mutual Information

    Full text link
    Most existing works on disentangled representation learning are solely built upon an marginal independence assumption: all factors in disentangled representations should be statistically independent. This assumption is necessary but definitely not sufficient for the disentangled representations without additional inductive biases in the modeling process, which is shown theoretically in recent studies. We argue in this work that disentangled representations should be characterized by their relation with observable data. In particular, we formulate such a relation through the concept of mutual information: the mutual information between each factor of the disentangled representations and data should be invariant conditioned on values of the other factors. Together with the widely accepted independence assumption, we further bridge it with the conditional independence of factors in representations conditioned on data. Moreover, we note that conditional independence of latent variables has been imposed on most VAE-type models and InfoGAN due to the artificial choice of factorized approximate posterior q(\rvz|\rvx) in the encoders. Such an arrangement of encoders introduces a crucial inductive bias for disentangled representations. To demonstrate the importance of our proposed assumption and the related inductive bias, we show in experiments that violating the assumption leads to decline of disentanglement among factors in the learned representations
    corecore