40 research outputs found

    Deep Clustering and Conventional Networks for Music Separation: Stronger Together

    Full text link
    Deep clustering is the first method to handle general audio separation scenarios with multiple sources of the same type and an arbitrary number of sources, performing impressively in speaker-independent speech separation tasks. However, little is known about its effectiveness in other challenging situations such as music source separation. Contrary to conventional networks that directly estimate the source signals, deep clustering generates an embedding for each time-frequency bin, and separates sources by clustering the bins in the embedding space. We show that deep clustering outperforms conventional networks on a singing voice separation task, in both matched and mismatched conditions, even though conventional networks have the advantage of end-to-end training for best signal approximation, presumably because its more flexible objective engenders better regularization. Since the strengths of deep clustering and conventional network architectures appear complementary, we explore combining them in a single hybrid network trained via an approach akin to multi-task learning. Remarkably, the combination significantly outperforms either of its components.Comment: Published in ICASSP 201

    A Recurrent Encoder-Decoder Approach with Skip-filtering Connections for Monaural Singing Voice Separation

    Full text link
    The objective of deep learning methods based on encoder-decoder architectures for music source separation is to approximate either ideal time-frequency masks or spectral representations of the target music source(s). The spectral representations are then used to derive time-frequency masks. In this work we introduce a method to directly learn time-frequency masks from an observed mixture magnitude spectrum. We employ recurrent neural networks and train them using prior knowledge only for the magnitude spectrum of the target source. To assess the performance of the proposed method, we focus on the task of singing voice separation. The results from an objective evaluation show that our proposed method provides comparable results to deep learning based methods which operate over complicated signal representations. Compared to previous methods that approximate time-frequency masks, our method has increased performance of signal to distortion ratio by an average of 3.8 dB

    Improving the perceptual quality of ideal binary masked speech

    Get PDF
    It is known that applying a time-frequency binary mask to very noisy speech can improve its intelligibility but results in poor perceptual quality. In this paper we propose a new approach to applying a binary mask that combines the intelligibility gains of conventional binary masking with the perceptual quality gains of a classical speech enhancer. The binary mask is not applied directly as a time-frequency gain as in most previous studies. Instead, the mask is used to supply prior information to a classical speech enhancer about the probability of speech presence in different time-frequency regions. Using an oracle ideal binary mask, we show that the proposed method results in a higher predicted quality than other methods of applying a binary mask whilst preserving the improvements in predicted intelligibility
    corecore