5,067 research outputs found

    Learning to Measure Change: Fully Convolutional Siamese Metric Networks for Scene Change Detection

    Full text link
    A critical challenge problem of scene change detection is that noisy changes generated by varying illumination, shadows and camera viewpoint make variances of a scene difficult to define and measure since the noisy changes and semantic ones are entangled. Following the intuitive idea of detecting changes by directly comparing dissimilarities between a pair of features, we propose a novel fully Convolutional siamese metric Network(CosimNet) to measure changes by customizing implicit metrics. To learn more discriminative metrics, we utilize contrastive loss to reduce the distance between the unchanged feature pairs and to enlarge the distance between the changed feature pairs. Specifically, to address the issue of large viewpoint differences, we propose Thresholded Contrastive Loss (TCL) with a more tolerant strategy to punish noisy changes. We demonstrate the effectiveness of the proposed approach with experiments on three challenging datasets: CDnet, PCD2015, and VL-CMU-CD. Our approach is robust to lots of challenging conditions, such as illumination changes, large viewpoint difference caused by camera motion and zooming. In addition, we incorporate the distance metric into the segmentation framework and validate the effectiveness through visualization of change maps and feature distribution. The source code is available at https://github.com/gmayday1997/ChangeDet.Comment: 10 pages, 12 figure

    A Survey on Multi-View Clustering

    Full text link
    With advances in information acquisition technologies, multi-view data become ubiquitous. Multi-view learning has thus become more and more popular in machine learning and data mining fields. Multi-view unsupervised or semi-supervised learning, such as co-training, co-regularization has gained considerable attention. Although recently, multi-view clustering (MVC) methods have been developed rapidly, there has not been a survey to summarize and analyze the current progress. Therefore, this paper reviews the common strategies for combining multiple views of data and based on this summary we propose a novel taxonomy of the MVC approaches. We further discuss the relationships between MVC and multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated. To promote future development of MVC, we envision several open problems that may require further investigation and thorough examination.Comment: 17 pages, 4 figure

    Unsupervised Multi-modal Hashing for Cross-modal retrieval

    Full text link
    With the advantage of low storage cost and high efficiency, hashing learning has received much attention in the domain of Big Data. In this paper, we propose a novel unsupervised hashing learning method to cope with this open problem to directly preserve the manifold structure by hashing. To address this problem, both the semantic correlation in textual space and the locally geometric structure in the visual space are explored simultaneously in our framework. Besides, the `2;1-norm constraint is imposed on the projection matrices to learn the discriminative hash function for each modality. Extensive experiments are performed to evaluate the proposed method on the three publicly available datasets and the experimental results show that our method can achieve superior performance over the state-of-the-art methods.Comment: 4 pages, 4 figure

    PM-GANs: Discriminative Representation Learning for Action Recognition Using Partial-modalities

    Full text link
    Data of different modalities generally convey complimentary but heterogeneous information, and a more discriminative representation is often preferred by combining multiple data modalities like the RGB and infrared features. However in reality, obtaining both data channels is challenging due to many limitations. For example, the RGB surveillance cameras are often restricted from private spaces, which is in conflict with the need of abnormal activity detection for personal security. As a result, using partial data channels to build a full representation of multi-modalities is clearly desired. In this paper, we propose a novel Partial-modal Generative Adversarial Networks (PM-GANs) that learns a full-modal representation using data from only partial modalities. The full representation is achieved by a generated representation in place of the missing data channel. Extensive experiments are conducted to verify the performance of our proposed method on action recognition, compared with four state-of-the-art methods. Meanwhile, a new Infrared-Visible Dataset for action recognition is introduced, and will be the first publicly available action dataset that contains paired infrared and visible spectrum

    Deep Facial Expression Recognition: A Survey

    Full text link
    With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias. In this paper, we provide a comprehensive survey on deep FER, including datasets and algorithms that provide insights into these intrinsic problems. First, we describe the standard pipeline of a deep FER system with the related background knowledge and suggestions of applicable implementations for each stage. We then introduce the available datasets that are widely used in the literature and provide accepted data selection and evaluation principles for these datasets. For the state of the art in deep FER, we review existing novel deep neural networks and related training strategies that are designed for FER based on both static images and dynamic image sequences, and discuss their advantages and limitations. Competitive performances on widely used benchmarks are also summarized in this section. We then extend our survey to additional related issues and application scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust deep FER systems

    Audio Surveillance: a Systematic Review

    Full text link
    Despite surveillance systems are becoming increasingly ubiquitous in our living environment, automated surveillance, currently based on video sensory modality and machine intelligence, lacks most of the time the robustness and reliability required in several real applications. To tackle this issue, audio sensory devices have been taken into account, both alone or in combination with video, giving birth, in the last decade, to a considerable amount of research. In this paper audio-based automated surveillance methods are organized into a comprehensive survey: a general taxonomy, inspired by the more widespread video surveillance field, is proposed in order to systematically describe the methods covering background subtraction, event classification, object tracking and situation analysis. For each of these tasks, all the significant works are reviewed, detailing their pros and cons and the context for which they have been proposed. Moreover, a specific section is devoted to audio features, discussing their expressiveness and their employment in the above described tasks. Differently, from other surveys on audio processing and analysis, the present one is specifically targeted to automated surveillance, highlighting the target applications of each described methods and providing the reader tables and schemes useful to retrieve the most suited algorithms for a specific requirement

    Learning Environmental Sounds with Multi-scale Convolutional Neural Network

    Full text link
    Deep learning has dramatically improved the performance of sounds recognition. However, learning acoustic models directly from the raw waveform is still challenging. Current waveform-based models generally use time-domain convolutional layers to extract features. The features extracted by single size filters are insufficient for building discriminative representation of audios. In this paper, we propose multi-scale convolution operation, which can get better audio representation by improving the frequency resolution and learning filters cross all frequency area. For leveraging the waveform-based features and spectrogram-based features in a single model, we introduce two-phase method to fuse the different features. Finally, we propose a novel end-to-end network called WaveMsNet based on the multi-scale convolution operation and two-phase method. On the environmental sounds classification datasets ESC-10 and ESC-50, the classification accuracies of our WaveMsNet achieve 93.75% and 79.10% respectively, which improve significantly from the previous methods.Comment: accepted by IJCNN 201

    Supervised Mixed Norm Autoencoder for Kinship Verification in Unconstrained Videos

    Full text link
    Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best-reported results. It is observed that the proposed SMNAE consistently yields best results on all the databasesComment: Accepted for publication in Transactions in Image Processin

    Weakly Supervised Representation Learning for Unsynchronized Audio-Visual Events

    Full text link
    Audio-visual representation learning is an important task from the perspective of designing machines with the ability to understand complex events. To this end, we propose a novel multimodal framework that instantiates multiple instance learning. We show that the learnt representations are useful for classifying events and localizing their characteristic audio-visual elements. The system is trained using only video-level event labels without any timing information. An important feature of our method is its capacity to learn from unsynchronized audio-visual events. We achieve state-of-the-art results on a large-scale dataset of weakly-labeled audio event videos. Visualizations of localized visual regions and audio segments substantiate our system's efficacy, especially when dealing with noisy situations where modality-specific cues appear asynchronously

    Predicting Human Intentions from Motion Only: A 2D+3D Fusion Approach

    Full text link
    In this paper, we address the new problem of the prediction of human intents. There is neuro-psychological evidence that actions performed by humans are anticipated by peculiar motor acts which are discriminant of the type of action going to be performed afterwards. In other words, an actual intent can be forecast by looking at the kinematics of the immediately preceding movement. To prove it in a computational and quantitative manner, we devise a new experimental setup where, without using contextual information, we predict human intents all originating from the same motor act. We posit the problem as a classification task and we introduce a new multi-modal dataset consisting of a set of motion capture marker 3D data and 2D video sequences, where, by only analysing very similar movements in both training and test phases, we are able to predict the underlying intent, i.e., the future, never observed action. We also present an extensive experimental evaluation as a baseline, customizing state-of-the-art techniques for either 3D and 2D data analysis. Realizing that video processing methods lead to inferior performance but show complementary information with respect to 3D data sequences, we developed a 2D+3D fusion analysis where we achieve better classification accuracies, attesting the superiority of the multimodal approach for the context-free prediction of human intents.Comment: accepted as poster at the 25th ACM Multimedia (ACM MM) 2017, Mountain View, California, US
    • …
    corecore