27 research outputs found

    Efficient Structured Prediction with Latent Variables for General Graphical Models

    Full text link
    In this paper we propose a unified framework for structured prediction with latent variables which includes hidden conditional random fields and latent structured support vector machines as special cases. We describe a local entropy approximation for this general formulation using duality, and derive an efficient message passing algorithm that is guaranteed to converge. We demonstrate its effectiveness in the tasks of image segmentation as well as 3D indoor scene understanding from single images, showing that our approach is superior to latent structured support vector machines and hidden conditional random fields.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Data-Driven Scene Understanding from 3D Models

    Full text link

    Towards Scene Understanding with Detailed 3D Object Representations

    Full text link
    Current approaches to semantic image and scene understanding typically employ rather simple object representations such as 2D or 3D bounding boxes. While such coarse models are robust and allow for reliable object detection, they discard much of the information about objects' 3D shape and pose, and thus do not lend themselves well to higher-level reasoning. Here, we propose to base scene understanding on a high-resolution object representation. An object class - in our case cars - is modeled as a deformable 3D wireframe, which enables fine-grained modeling at the level of individual vertices and faces. We augment that model to explicitly include vertex-level occlusion, and embed all instances in a common coordinate frame, in order to infer and exploit object-object interactions. Specifically, from a single view we jointly estimate the shapes and poses of multiple objects in a common 3D frame. A ground plane in that frame is estimated by consensus among different objects, which significantly stabilizes monocular 3D pose estimation. The fine-grained model, in conjunction with the explicit 3D scene model, further allows one to infer part-level occlusions between the modeled objects, as well as occlusions by other, unmodeled scene elements. To demonstrate the benefits of such detailed object class models in the context of scene understanding we systematically evaluate our approach on the challenging KITTI street scene dataset. The experiments show that the model's ability to utilize image evidence at the level of individual parts improves monocular 3D pose estimation w.r.t. both location and (continuous) viewpoint.Comment: International Journal of Computer Vision (appeared online on 4 November 2014). Online version: http://link.springer.com/article/10.1007/s11263-014-0780-
    corecore