294 research outputs found

    Understanding Kernel Size in Blind Deconvolution

    Full text link
    Most blind deconvolution methods usually pre-define a large kernel size to guarantee the support domain. Blur kernel estimation error is likely to be introduced, yielding severe artifacts in deblurring results. In this paper, we first theoretically and experimentally analyze the mechanism to estimation error in oversized kernel, and show that it holds even on blurry images without noises. Then to suppress this adverse effect, we propose a low rank-based regularization on blur kernel to exploit the structural information in degraded kernels, by which larger-kernel effect can be effectively suppressed. And we propose an efficient optimization algorithm to solve it. Experimental results on benchmark datasets show that the proposed method is comparable with the state-of-the-arts by accordingly setting proper kernel size, and performs much better in handling larger-size kernels quantitatively and qualitatively. The deblurring results on real-world blurry images further validate the effectiveness of the proposed method.Comment: Accepted by WACV 201

    Learning Discriminative Shrinkage Deep Networks for Image Deconvolution

    Full text link
    Most existing methods usually formulate the non-blind deconvolution problem into a maximum-a-posteriori framework and address it by manually designing kinds of regularization terms and data terms of the latent clear images. However, explicitly designing these two terms is quite challenging and usually leads to complex optimization problems which are difficult to solve. In this paper, we propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms. In contrast to most existing methods that use deep convolutional neural networks (CNNs) or radial basis functions to simply learn the regularization term, we formulate both the data term and regularization term and split the deconvolution model into data-related and regularization-related sub-problems according to the alternating direction method of multipliers. We explore the properties of the Maxout function and develop a deep CNN model with a Maxout layer to learn discriminative shrinkage functions to directly approximate the solutions of these two sub-problems. Moreover, given the fast-Fourier-transform-based image restoration usually leads to ringing artifacts while conjugate-gradient-based approach is time-consuming, we develop the Conjugate Gradient Network to restore the latent clear images effectively and efficiently. Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy

    Learning Deep CNN Denoiser Prior for Image Restoration

    Full text link
    Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.Comment: Accepted to CVPR 2017. Code: https://github.com/cszn/ircn
    • …
    corecore