4,437 research outputs found

    Joint Projection and Dictionary Learning using Low-rank Regularization and Graph Constraints

    Full text link
    In this paper, we aim at learning simultaneously a discriminative dictionary and a robust projection matrix from noisy data. The joint learning, makes the learned projection and dictionary a better fit for each other, so a more accurate classification can be obtained. However, current prevailing joint dimensionality reduction and dictionary learning methods, would fail when the training samples are noisy or heavily corrupted. To address this issue, we propose a joint projection and dictionary learning using low-rank regularization and graph constraints (JPDL-LR). Specifically, the discrimination of the dictionary is achieved by imposing Fisher criterion on the coding coefficients. In addition, our method explicitly encodes the local structure of data by incorporating a graph regularization term, that further improves the discriminative ability of the projection matrix. Inspired by recent advances of low-rank representation for removing outliers and noise, we enforce a low-rank constraint on sub-dictionaries of all classes to make them more compact and robust to noise. Experimental results on several benchmark datasets verify the effectiveness and robustness of our method for both dimensionality reduction and image classification, especially when the data contains considerable noise or variations

    Multi-View Task-Driven Recognition in Visual Sensor Networks

    Full text link
    Nowadays, distributed smart cameras are deployed for a wide set of tasks in several application scenarios, ranging from object recognition, image retrieval, and forensic applications. Due to limited bandwidth in distributed systems, efficient coding of local visual features has in fact been an active topic of research. In this paper, we propose a novel approach to obtain a compact representation of high-dimensional visual data using sensor fusion techniques. We convert the problem of visual analysis in resource-limited scenarios to a multi-view representation learning, and we show that the key to finding properly compressed representation is to exploit the position of cameras with respect to each other as a norm-based regularization in the particular signal representation of sparse coding. Learning the representation of each camera is viewed as an individual task and a multi-task learning with joint sparsity for all nodes is employed. The proposed representation learning scheme is referred to as the multi-view task-driven learning for visual sensor network (MT-VSN). We demonstrate that MT-VSN outperforms state-of-the-art in various surveillance recognition tasks.Comment: 5 pages, Accepted in International Conference of Image Processing, 201

    Jointly Learning Structured Analysis Discriminative Dictionary and Analysis Multiclass Classifier

    Full text link
    In this paper, we propose an analysis mechanism based structured Analysis Discriminative Dictionary Learning (ADDL) framework. ADDL seamlessly integrates the analysis discriminative dictionary learning, analysis representation and analysis classifier training into a unified model. The applied analysis mechanism can make sure that the learnt dictionaries, representations and linear classifiers over different classes are independent and discriminating as much as possible. The dictionary is obtained by minimizing a reconstruction error and an analytical incoherence promoting term that encourages the sub-dictionaries associated with different classes to be independent. To obtain the representation coefficients, ADDL imposes a sparse l2,1-norm constraint on the coding coefficients instead of using l0 or l1-norm, since the l0 or l1-norm constraint applied in most existing DL criteria makes the training phase time consuming. The codes-extraction projection that bridges data with the sparse codes by extracting special features from the given samples is calculated via minimizing a sparse codes approximation term. Then we compute a linear classifier based on the approximated sparse codes by an analysis mechanism to simultaneously consider the classification and representation powers. Thus, the classification approach of our model is very efficient, because it can avoid the extra time-consuming sparse reconstruction process with trained dictionary for each new test data as most existing DL algorithms. Simulations on real image databases demonstrate that our ADDL model can obtain superior performance over other state-of-the-arts.Comment: Accepted by IEEE TNNL

    Structured Occlusion Coding for Robust Face Recognition

    Full text link
    Occlusion in face recognition is a common yet challenging problem. While sparse representation based classification (SRC) has been shown promising performance in laboratory conditions (i.e. noiseless or random pixel corrupted), it performs much worse in practical scenarios. In this paper, we consider the practical face recognition problem, where the occlusions are predictable and available for sampling. We propose the structured occlusion coding (SOC) to address occlusion problems. The structured coding here lies in two folds. On one hand, we employ a structured dictionary for recognition. On the other hand, we propose to use the structured sparsity in this formulation. Specifically, SOC simultaneously separates the occlusion and classifies the image. In this way, the problem of recognizing an occluded image is turned into seeking a structured sparse solution on occlusion-appended dictionary. In order to construct a well-performing occlusion dictionary, we propose an occlusion mask estimating technique via locality constrained dictionary (LCD), showing striking improvement in occlusion sample. On a category-specific occlusion dictionary, we replace norm sparsity with the structured sparsity which is shown more robust, further enhancing the robustness of our approach. Moreover, SOC achieves significant improvement in handling large occlusion in real world. Extensive experiments are conducted on public data sets to validate the superiority of the proposed algorithm

    Deep Boosting: Joint Feature Selection and Analysis Dictionary Learning in Hierarchy

    Full text link
    This work investigates how the traditional image classification pipelines can be extended into a deep architecture, inspired by recent successes of deep neural networks. We propose a deep boosting framework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we construct a dictionary of filters by combining the filters from the lower layer, and iteratively optimize the image representation with a joint discriminative-generative formulation, i.e. minimization of empirical classification error plus regularization of analysis image generation over training images. For optimization, we perform two iterating steps: i) to minimize the classification error, select the most discriminative features using the gentle adaboost algorithm; ii) according to the feature selection, update the filters to minimize the regularization on analysis image representation using the gradient descent method. Once the optimization is converged, we learn the higher layer representation in the same way. Our model delivers several distinct advantages. First, our layer-wise optimization provides the potential to build very deep architectures. Second, the generated image representation is compact and meaningful. In several visual recognition tasks, our framework outperforms existing state-of-the-art approaches

    Cross-label Suppression: A Discriminative and Fast Dictionary Learning with Group Regularization

    Full text link
    This paper addresses image classification through learning a compact and discriminative dictionary efficiently. Given a structured dictionary with each atom (columns in the dictionary matrix) related to some label, we propose cross-label suppression constraint to enlarge the difference among representations for different classes. Meanwhile, we introduce group regularization to enforce representations to preserve label properties of original samples, meaning the representations for the same class are encouraged to be similar. Upon the cross-label suppression, we don't resort to frequently-used â„“0\ell_0-norm or â„“1\ell_1-norm for coding, and obtain computational efficiency without losing the discriminative power for categorization. Moreover, two simple classification schemes are also developed to take full advantage of the learnt dictionary. Extensive experiments on six data sets including face recognition, object categorization, scene classification, texture recognition and sport action categorization are conducted, and the results show that the proposed approach can outperform lots of recently presented dictionary algorithms on both recognition accuracy and computational efficiency.Comment: 36 pages, 12 figures, 11 table

    Covariance of Motion and Appearance Featuresfor Spatio Temporal Recognition Tasks

    Full text link
    In this paper, we introduce an end-to-end framework for video analysis focused towards practical scenarios built on theoretical foundations from sparse representation, including a novel descriptor for general purpose video analysis. In our approach, we compute kinematic features from optical flow and first and second-order derivatives of intensities to represent motion and appearance respectively. These features are then used to construct covariance matrices which capture joint statistics of both low-level motion and appearance features extracted from a video. Using an over-complete dictionary of the covariance based descriptors built from labeled training samples, we formulate low-level event recognition as a sparse linear approximation problem. Within this, we pose the sparse decomposition of a covariance matrix, which also conforms to the space of semi-positive definite matrices, as a determinant maximization problem. Also since covariance matrices lie on non-linear Riemannian manifolds, we compare our former approach with a sparse linear approximation alternative that is suitable for equivalent vector spaces of covariance matrices. This is done by searching for the best projection of the query data on a dictionary using an Orthogonal Matching pursuit algorithm. We show the applicability of our video descriptor in two different application domains - namely low-level event recognition in unconstrained scenarios and gesture recognition using one shot learning. Our experiments provide promising insights in large scale video analysis

    Sparse Dictionary-based Attributes for Action Recognition and Summarization

    Full text link
    We present an approach for dictionary learning of action attributes via information maximization. We unify the class distribution and appearance information into an objective function for learning a sparse dictionary of action attributes. The objective function maximizes the mutual information between what has been learned and what remains to be learned in terms of appearance information and class distribution for each dictionary atom. We propose a Gaussian Process (GP) model for sparse representation to optimize the dictionary objective function. The sparse coding property allows a kernel with compact support in GP to realize a very efficient dictionary learning process. Hence we can describe an action video by a set of compact and discriminative action attributes. More importantly, we can recognize modeled action categories in a sparse feature space, which can be generalized to unseen and unmodeled action categories. Experimental results demonstrate the effectiveness of our approach in action recognition and summarization

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    Kernel Coding: General Formulation and Special Cases

    Full text link
    Representing images by compact codes has proven beneficial for many visual recognition tasks. Most existing techniques, however, perform this coding step directly in image feature space, where the distributions of the different classes are typically entangled. In contrast, here, we study the problem of performing coding in a high-dimensional Hilbert space, where the classes are expected to be more easily separable. To this end, we introduce a general coding formulation that englobes the most popular techniques, such as bag of words, sparse coding and locality-based coding, and show how this formulation and its special cases can be kernelized. Importantly, we address several aspects of learning in our general formulation, such as kernel learning, dictionary learning and supervised kernel coding. Our experimental evaluation on several visual recognition tasks demonstrates the benefits of performing coding in Hilbert space, and in particular of jointly learning the kernel, the dictionary and the classifier
    • …
    corecore