4 research outputs found

    3D Face Recognition using Significant Point based SULD Descriptor

    Full text link
    In this work, we present a new 3D face recognition method based on Speeded-Up Local Descriptor (SULD) of significant points extracted from the range images of faces. The proposed model consists of a method for extracting distinctive invariant features from range images of faces that can be used to perform reliable matching between different poses of range images of faces. For a given 3D face scan, range images are computed and the potential interest points are identified by searching at all scales. Based on the stability of the interest point, significant points are extracted. For each significant point we compute the SULD descriptor which consists of vector made of values from the convolved Haar wavelet responses located on concentric circles centred on the significant point, and where the amount of Gaussian smoothing is proportional to the radii of the circles. Experimental results show that the newly proposed method provides higher recognition rate compared to other existing contemporary models developed for 3D face recognition

    Deep Learning Machine using Hierarchical Cluster Features

    Get PDF
    Deep learning of multi-layer computational models allowed processing to recognize data representation at multiple levels of abstraction. These techniques have greatly improved the latest ear recognition technology. PNN is a type of radiative basis for classification problems and is based on the Bayes decision-making base, which reduces the expected error of classification. In this paper, strong features of images are used to give a good result, therefore, SIFT method using these features after adding improvements and developments. This method was one of the powerful algorithms in matching that needed to find energy pixels. This method gives stronger feature on features and gives a large number of a strong pixel, which is considered a center and neglected the remainder of it in our work. Each pixel of which is constant for image translation, scaling, rotation, and embedded lighting changes in lighting or 3D projection. Therefore, the interpretation is developed by using a hierarchical cluster method; to assign a set of properties (find the approximation between pixels) were classified into one

    Modified SIFT Descriptors for Face Recognition under Different Emotions

    Get PDF
    corecore