945 research outputs found

    Online Unsupervised Multi-view Feature Selection

    Full text link
    In the era of big data, it is becoming common to have data with multiple modalities or coming from multiple sources, known as "multi-view data". Multi-view data are usually unlabeled and come from high-dimensional spaces (such as language vocabularies), unsupervised multi-view feature selection is crucial to many applications. However, it is nontrivial due to the following challenges. First, there are too many instances or the feature dimensionality is too large. Thus, the data may not fit in memory. How to select useful features with limited memory space? Second, how to select features from streaming data and handles the concept drift? Third, how to leverage the consistent and complementary information from different views to improve the feature selection in the situation when the data are too big or come in as streams? To the best of our knowledge, none of the previous works can solve all the challenges simultaneously. In this paper, we propose an Online unsupervised Multi-View Feature Selection, OMVFS, which deals with large-scale/streaming multi-view data in an online fashion. OMVFS embeds unsupervised feature selection into a clustering algorithm via NMF with sparse learning. It further incorporates the graph regularization to preserve the local structure information and help select discriminative features. Instead of storing all the historical data, OMVFS processes the multi-view data chunk by chunk and aggregates all the necessary information into several small matrices. By using the buffering technique, the proposed OMVFS can reduce the computational and storage cost while taking advantage of the structure information. Furthermore, OMVFS can capture the concept drifts in the data streams. Extensive experiments on four real-world datasets show the effectiveness and efficiency of the proposed OMVFS method. More importantly, OMVFS is about 100 times faster than the off-line methods

    Interpretable Low-Rank Document Representations with Label-Dependent Sparsity Patterns

    Full text link
    In context of document classification, where in a corpus of documents their label tags are readily known, an opportunity lies in utilizing label information to learn document representation spaces with better discriminative properties. To this end, in this paper application of a Variational Bayesian Supervised Nonnegative Matrix Factorization (supervised vbNMF) with label-driven sparsity structure of coefficients is proposed for learning of discriminative nonsubtractive latent semantic components occuring in TF-IDF document representations. Constraints are such that the components pursued are made to be frequently occuring in a small set of labels only, making it possible to yield document representations with distinctive label-specific sparse activation patterns. A simple measure of quality of this kind of sparsity structure, dubbed inter-label sparsity, is introduced and experimentally brought into tight connection with classification performance. Representing a great practical convenience, inter-label sparsity is shown to be easily controlled in supervised vbNMF by a single parameter

    Non-Negative Discriminative Data Analytics

    Get PDF
    Due to advancements in data acquisition techniques, collecting datasets representing samples from multi-views has become more common recently (Jia et al. 2019). For instance, in genomics, a lymphoma patient’s dataset may include data on gene expression, single nucleotide polymorphism (SNP), and array Comparative genomic hybridization (aCGH) measurements. Learning from multiple views about the same objective, in general, obtains a better understanding of the hidden patterns of the data compared to learning from a single view data. Most of the existing multi-view learning techniques such as canonical correlation analysis (Hotelling et al. 1936) and multi-view support vector machine (Farquhar et al. 2006), multiple kernel learning (Zhang et al. 2016) are focused on extracting the shared information among multiple datasets. However, in some real-world applications, it’s appealing to extract the discriminative knowledge of multiple datasets, namely discriminative data analytics. For example, consider the one dataset as gene-expression measurements of cancer patients, and the other dataset as the gene-expression levels of healthy volunteers and the goal is to cluster cancer patients according to the molecular sub-types. Performing a single view analysis such as principal component analysis (PCA) on any of the dataset yields information related to the common knowledge between the two datasets (Garte et al. 1996). Addressing such challenge, contrastive PCA (Abid et al. 2017) and discriminative (d) PCA in (Jia et al. 2019) are proposed in to extract one dataset-specific information often missed by PCA. Inspired by dPCA, we propose a novel discriminative multi-view learning algorithm, namely Non-negative Discriminative Analysis (DNA), to extract the unique information of one dataset (a.k.a. view) with respect to the other dataset. This boils down to solving a non-negative matrix factorization problem. Furthermore, we apply the proposed DNA framework in various real-world down-stream machine learning applications such as feature selections, dimensionality reduction, classification, and clustering
    • …
    corecore