865 research outputs found

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703

    Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System

    Full text link
    In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.Comment: Accepted for Speaker Odyssey 201

    Improving Multi-Scale Aggregation Using Feature Pyramid Module for Robust Speaker Verification of Variable-Duration Utterances

    Full text link
    Currently, the most widely used approach for speaker verification is the deep speaker embedding learning. In this approach, we obtain a speaker embedding vector by pooling single-scale features that are extracted from the last layer of a speaker feature extractor. Multi-scale aggregation (MSA), which utilizes multi-scale features from different layers of the feature extractor, has recently been introduced and shows superior performance for variable-duration utterances. To increase the robustness dealing with utterances of arbitrary duration, this paper improves the MSA by using a feature pyramid module. The module enhances speaker-discriminative information of features from multiple layers via a top-down pathway and lateral connections. We extract speaker embeddings using the enhanced features that contain rich speaker information with different time scales. Experiments on the VoxCeleb dataset show that the proposed module improves previous MSA methods with a smaller number of parameters. It also achieves better performance than state-of-the-art approaches for both short and long utterances.Comment: Accepted to Interspeech 202

    Learning weakly supervised multimodal phoneme embeddings

    Full text link
    Recent works have explored deep architectures for learning multimodal speech representation (e.g. audio and images, articulation and audio) in a supervised way. Here we investigate the role of combining different speech modalities, i.e. audio and visual information representing the lips movements, in a weakly supervised way using Siamese networks and lexical same-different side information. In particular, we ask whether one modality can benefit from the other to provide a richer representation for phone recognition in a weakly supervised setting. We introduce mono-task and multi-task methods for merging speech and visual modalities for phone recognition. The mono-task learning consists in applying a Siamese network on the concatenation of the two modalities, while the multi-task learning receives several different combinations of modalities at train time. We show that multi-task learning enhances discriminability for visual and multimodal inputs while minimally impacting auditory inputs. Furthermore, we present a qualitative analysis of the obtained phone embeddings, and show that cross-modal visual input can improve the discriminability of phonological features which are visually discernable (rounding, open/close, labial place of articulation), resulting in representations that are closer to abstract linguistic features than those based on audio only

    VoxCeleb2: Deep Speaker Recognition

    Full text link
    The objective of this paper is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.Comment: To appear in Interspeech 2018. The audio-visual dataset can be downloaded from http://www.robots.ox.ac.uk/~vgg/data/voxceleb2 . 1806.05622v2: minor fixes; 5 page
    • …
    corecore