70 research outputs found

    Design of module level converters in photovoltaic power systems

    Get PDF
    The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters.The application of distributed maximum power point tracking (DMPPT) technology in solar photovoltaic (PV) systems is a hot topic in industry and academia. In the PV industry, grid integrated power systems are mainstream. The main objective for PV system design is to increase energy conversion efficiency and decrease the levelized cost of electricity of PV generators. This thesis firstly presents an extensive review of state-of-the-art PV technologies. With focus on grid integrated PV systems research, various aspects covered include PV materials, conventional full power processing DMPPT architectures, main MPPT techniques, and traditional partial power processing DMPPT architectures. The main restrictions to applying traditional DMPPT architectures in large power systems are discussed. A parallel connected partial power processing DMPPT architecture is proposed aiming to overcome existing restrictions. With flexible ‘plug-and-play’ functionality, the proposed architecture can be readily expanded to supply a downstream inverter stage or dc network. By adopting smaller module integrated converters, the proposed approach provides a possible efficiency improvement and cost reduction. The requirements for possible converter candidates and control strategies are analysed. One representative circuit scheme is presented as an example to verify the feasibility of the design. An electromagnetic transient model is built for different power scale PV systems to verify the DMPPT feasibility of the evaluated architecture in a large-scale PV power system. Voltage boosting ability is widely needed for converters in DMPPT applications. Impedance source converters (ISCs) are the main converter types with step-up ability. However, these converters have a general problem of low order distortion when applied in dc-ac applications. To solve this problem, a generic plug-in repetitive control strategy for a four-switch three-phase ISC type inverter configuration is developed. Simulation and experimental results confirm that this control strategy is suitable for many ISC converters

    MODELING AND CONTROL OF DIRECT-CONVERSION HYBRID SWITCHED-CAPACITOR DC-DC CONVERTERS

    Get PDF
    Efficient power delivery is increasingly important in modern computing, communications, consumer and other electronic systems, due to the high power demand and thermal concerns accompanied by performance advancements and tight packaging. In pursuit of high efficiency, small physical volume, and flexible regulation, hybrid switched-capacitor topologies have emerged as promising candidates for such applications. By incorporating both capacitors and inductors as energy storage elements, hybrid topologies achieve high power density while still maintaining soft charging and efficient regulation characteristics. However, challenges exist in the hybrid approach. In terms of reliability, each flying capacitor should be maintained at a nominal `balanced\u27 voltage for robust operation (especially during transients and startup), complicating the control system design. In terms of implementation, switching devices in hybrid converters often need complex gate driving circuits which add cost, area, and power consumption. This dissertation explores techniques that help to mitigate the aforementioned challenges. A discrete-time state space model is derived by treating the hybrid converter as two subsystems, the switched-capacitor stage and the output filter stage. This model is then used to design an estimator that extracts all flying capacitor voltages from the measurement of a single node. The controllability and observability of the switched-capacitor stage reveal the fundamental cause of imbalance at certain conversion ratios. A new switching sequence, the modified phase-shifted pulse width modulation, is developed to enable natural balance in originally imbalanced scenarios. Based on the model, a novel control algorithm, constant switch stress control, is proposed to achieve both output voltage regulation and active balance with fast dynamics. Finally, the design technique and test result of an integrated hybrid switched-capacitor converter are reported. A proposed gate driving strategy eliminates the need for external driving supplies and reduces the bootstrap capacitor area. On-chip mixed signal control ensures fast balancing dynamics and makes hard startup tolerable. This prototype achieves 96.9\% peak efficiency at 5V:1.2V conversion and a startup time of 12μs\mu s, which is over 100 times faster than the closest prior art. With the modeling, control, and design techniques introduced in this dissertation, the application of hybrid switched-capacitor converters may be extended to scenarios that were previously challenging for them, allowing enhanced performance compared to using traditional topologies. For problems that may require future attention, this dissertation also points to possible directions for further improvements

    Sliding-Mode Perturbation Observer-Based Sliding-Mode Control for VSC-HVDC Systems

    Get PDF
    This chapter develops a sliding-mode perturbation observer-based sliding-mode control (POSMC) scheme for voltage source converter-based high voltage direct current (VSC-HVDC) systems. The combinatorial effect of nonlinearities, parameter uncertainties, unmodeled dynamics, and time-varying external disturbances is aggregated into a perturbation, which is estimated online by a sliding-mode state and perturbation observer (SMSPO). POSMC does not require an accurate VSC-HVDC system model and only the reactive power and DC voltage at the rectifier side while reactive and active powers at the inverter side need to be measured. Additionally, a considerable robustness can be provided through the real-time compensation of the perturbation, in which the upper bound of perturbation is replaced by the real-time estimation of the perturbation, such that the over-conservativeness of conventional sliding-mode control (SMC) can be effectively reduced. Four case studies are carried out on the VSC-HVDC system, such as active and reactive power tracking, AC bus fault, system parameter uncertainties, and weak AC gird connection. Simulation results verify its advantages over vector control and feedback linearization sliding-mode control. Then, a dSPACE-based hardware-in-the-loop (HIL) test is undertaken to validate the implementation feasibility of the proposed approach

    Robust dynamic control strategy for standalone photovoltaic system under varying load and environmental conditions

    Get PDF
    Standalone photovoltaic (PV) systems are widely considered as an alternative source of utility grid due to the notable merits such as inexhaustible solar energy, pollution and noise free power generation, ease of assembly and relatively low costs. However, the major drawbacks of these systems are their environmentally-dependent characteristics and performance degradation due to sudden load variations. In order to address these challenges, two objectives must be met simultaneously for consistent and reliable output of PV system. First, the efficient tracking of maximum power point of the PV array in changing environmental conditions and secondly, the smooth conversion of the direct current (DC) input voltage into the desired level of alternating current (AC) output voltage in the presence of load variations. In this thesis, a standalone PV system with two independent control strategies have been presented. At the first stage, a hybrid non-linear maximum power point (MPPT) technique based on the perturb and observe and integral back-stepping control algorithm is proposed to extract the maximum power from the PV array. The integral action in the MPPT algorithm significantly reduces the oscillations in the PV array output that is fed to the DC-AC inverter at the second stage. Then, at the second stage, a dynamic disturbance rejection strategy based on super twisting sliding mode control (ST-SMC) has been proposed to regulate AC power for a variety of loads at the system output. The PV inverter load parameter disturbances and their effect on the system dynamics are aggregated into a perturbation, which is then estimated online by a newly designed higher-order sliding mode observer. The estimated perturbation is then compensated by the ST-SMC such that a better control performance could be achieved with significant robustness against load disturbances. The proposed control algorithms are evaluated and benchmarked with the existing backstepping controller (BSC) in terms of dynamic response, efficiency, steady-state error and total harmonic distortion (THD) handling capability under varying environmental and load conditions. The designed control strategy reaches the steady-state in 0.005 sec and gives a DC-DC conversion efficiency of 99.85% for the peak solar irradiation level as compared to the 0.008 sec and 99.7% for BSC. The AC-stage steady-state error is minimized to 0.005V compared to 0.51V of BSC whereas, THD is limited to 0.07% and 0.11% for linear and non-linear loads respectively for the proposed algorithm as compared to 0.34% and 2.04% for BSC

    DC/DC converter for offshore DC collection network

    Get PDF
    Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes.Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes

    Nonlinear control of two-stage single-phase standalone photovoltaic system

    Get PDF
    This paper presents a single-phase Photovoltaic (PV) inverter with its superior and robust control in a standalone mode. Initially, modeling and layout of the Buck-Boost DC-DC converter by adopting a non-linear Robust Integral Back-stepping controller (RIBSC) is provided. The controller makes use of a reference voltage generated through the regression plane so that the operating point corresponding to the maximum power point (MPP) could be achieved through the converter under changing climatic conditions. The other main purpose of the Buck-Boost converter is to act like a transformer and produce an increased voltage at the inverter input whenever desired. By not using a transformer makes the circuit size more compact and cost-effective. The proposed RIBSC is applied to an H-bridge inverter with an LC filter to produce the sinusoidal wave in the presence of variations in the output to minimize the difference between the output voltage and the reference voltage. Lyapunov stability criterion has been used to verify the stability and finite-time convergence of the overall system. The overall system is simulated in MATLAB/Simulink to test the system performance with different loads, varying climatic conditions and inverter reference voltages. The proposed methodology is compared with a back-stepping controller and Proportional Integral Derivative (PID) controller under rapidly varying climatic conditions. Results demonstrated that the proposed technique yielded a tracking time of 0.01s, a total harmonic distortion of 9.71% and a root means square error of 0.3998 in the case of resistive load thus showing superior control performance compared to the state-of-the-art control techniques

    A novel adaptive cascade controller design on a buck–boost DC–DC converter with a fractional‐order PID voltage controller and a self‐tuning regulator adaptive current controller

    Get PDF
    The design of a cascade controller is demonstrated for a buck–boost converter that is combined with two control loops consisting of inner and outer controllers. The outer loop is implemented by a fractional-order proportional-integrated-derivative (FO-PID) controller that works as a voltage controller and generates a reference current for the inner control loop. To provide faster dynamic performance for inner loop, a self-tuning regulator adaptive controller, which tries to regulates the current with the help of a novel improved exponential regressive least square identification in an online technique, is designed. Moreover, in the outer loop, to tune the gains of the FO-PID controller, a novel algorithm of antlion optimizer algorithm is used that offers many benefits in comparison with other algorithms. The system provided by the boost mode is a non-minimum phase system, which creates challenges for designing a stable controller. In addition, a single loop controller is proposed based on a PID controller tuned by a particle swarm optimization algorithm to be compared with the cascade controller. Cascade loop can present significant benefits to the controller such as better disturbance rejection. Finally, the strength of the presented cascade control scheme is verified in different performing situations by real-time experiments

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore