7 research outputs found

    Discrete-State Abstractions of Nonlinear Systems Using Multi-resolution Quantizer

    Full text link
    Abstract. This paper proposes a design method for discrete abstrac-tions of nonlinear systems using multi-resolution quantizer, which is ca-pable of handling state dependent approximation precision requirements. To this aim, we extend the notion of quantizer embedding, which has been proposed by the authors ’ previous works as a transformation from continuous-state systems to discrete-state systems, to a multi-resolution setting. Then, we propose a computational method that analyzes how a locally generated quantization error is propagated through the state space. Based on this method, we present an algorithm that generates a multi-resolution quantizer with a specified error precision by finite refine-ments. Discrete abstractions produced by the proposed method exhibit non-uniform distribution of discrete states and inputs.

    Symbolic models for nonlinear control systems without stability assumptions

    Full text link
    Finite-state models of control systems were proposed by several researchers as a convenient mechanism to synthesize controllers enforcing complex specifications. Most techniques for the construction of such symbolic models have two main drawbacks: either they can only be applied to restrictive classes of systems, or they require the exact computation of reachable sets. In this paper, we propose a new abstraction technique that is applicable to any smooth control system as long as we are only interested in its behavior in a compact set. Moreover, the exact computation of reachable sets is not required. The effectiveness of the proposed results is illustrated by synthesizing a controller to steer a vehicle.Comment: 11 pages, 2 figures, journa

    Towards Scalable Synthesis of Stochastic Control Systems

    Full text link
    Formal control synthesis approaches over stochastic systems have received significant attention in the past few years, in view of their ability to provide provably correct controllers for complex logical specifications in an automated fashion. Examples of complex specifications of interest include properties expressed as formulae in linear temporal logic (LTL) or as automata on infinite strings. A general methodology to synthesize controllers for such properties resorts to symbolic abstractions of the given stochastic systems. Symbolic models are discrete abstractions of the given concrete systems with the property that a controller designed on the abstraction can be refined (or implemented) into a controller on the original system. Although the recent development of techniques for the construction of symbolic models has been quite encouraging, the general goal of formal synthesis over stochastic control systems is by no means solved. A fundamental issue with the existing techniques is the known "curse of dimensionality," which is due to the need to discretize state and input sets and that results in an exponential complexity over the number of state and input variables in the concrete system. In this work we propose a novel abstraction technique for incrementally stable stochastic control systems, which does not require state-space discretization but only input set discretization, and that can be potentially more efficient (and thus scalable) than existing approaches. We elucidate the effectiveness of the proposed approach by synthesizing a schedule for the coordination of two traffic lights under some safety and fairness requirements for a road traffic model. Further we argue that this 5-dimensional linear stochastic control system cannot be studied with existing approaches based on state-space discretization due to the very large number of generated discrete states.Comment: 22 pages, 3 figures. arXiv admin note: text overlap with arXiv:1407.273
    corecore