3 research outputs found

    Performance Analysis and Optimal Allocation of Layered Defense M/M/N Queueing Systems

    Get PDF
    One important mission of strategic defense is to develop an integrated layered Ballistic Missile Defense System (BMDS). Motivated by the queueing theory, we presented a work for the representation, modeling, performance simulation, and channels optimal allocation of the layered BMDS M/M/N queueing systems. Firstly, in order to simulate the process of defense and to study the Defense Effectiveness (DE), we modeled and simulated the M/M/N queueing system of layered BMDS. Specifically, we proposed the M/M/N/N and M/M/N/C queueing model for short defense depth and long defense depth, respectively; single target channel and multiple target channels were distinguished in each model. Secondly, we considered the problem of assigning limited target channels to incoming targets, we illustrated how to allocate channels for achieving the best DE, and we also proposed a novel and robust search algorithm for obtaining the minimum channel requirements across a set of neighborhoods. Simultaneously, we presented examples of optimal allocation problems under different constraints. Thirdly, several simulation examples verified the effectiveness of the proposed queueing models. This work may help to understand the rules of queueing process and to provide optimal configuration suggestions for defense decision-making

    Approximate Dynamic Programming for Military Resource Allocation

    Get PDF
    This research considers the optimal allocation of weapons to a collection of targets with the objective of maximizing the value of destroyed targets. The weapon-target assignment (WTA) problem is a classic non-linear combinatorial optimization problem with an extensive history in operations research literature. The dynamic weapon target assignment (DWTA) problem aims to assign weapons optimally over time using the information gained to improve the outcome of their engagements. This research investigates various formulations of the DWTA problem and develops algorithms for their solution. Finally, an embedded optimization problem is introduced in which optimization of the multi-stage DWTA is used to determine optimal weaponeering of aircraft. Approximate dynamic programming is applied to the various formulations of the WTA problem. Like many in the field of combinatorial optimization, the DWTA problem suffers from the curses of dimensionality and exact solutions are often computationally intractability. As such, approximations are developed which exploit the special structure of the problem and allow for efficient convergence to high-quality local optima. Finally, a genetic algorithm solution framework is developed to test the embedded optimization problem for aircraft weaponeering
    corecore