4,089 research outputs found

    Geometry of quadrilateral nets: second Hamiltonian form

    Full text link
    Discrete Darboux-Manakov-Zakharov systems possess two distinct Hamiltonian forms. In the framework of discrete-differential geometry one Hamiltonian form appears in a geometry of circular net. In this paper a geometry of second form is identified.Comment: 6 page

    The state space for two qutrits has a phase space structure in its core

    Full text link
    We investigate the state space of bipartite qutrits. For states which are locally maximally mixed we obtain an analog of the ``magic'' tetrahedron for bipartite qubits--a magic simplex W. This is obtained via the Weyl group which is a kind of ``quantization'' of classical phase space. We analyze how this simplex W is embedded in the whole state space of two qutrits and discuss symmetries and equivalences inside the simplex W. Because we are explicitly able to construct optimal entanglement witnesses we obtain the border between separable and entangled states. With our method we find also the total area of bound entangled states of the parameter subspace under intervestigation. Our considerations can also be applied to higher dimensions.Comment: 3 figure

    Empirical Bounds on Linear Regions of Deep Rectifier Networks

    Full text link
    We can compare the expressiveness of neural networks that use rectified linear units (ReLUs) by the number of linear regions, which reflect the number of pieces of the piecewise linear functions modeled by such networks. However, enumerating these regions is prohibitive and the known analytical bounds are identical for networks with same dimensions. In this work, we approximate the number of linear regions through empirical bounds based on features of the trained network and probabilistic inference. Our first contribution is a method to sample the activation patterns defined by ReLUs using universal hash functions. This method is based on a Mixed-Integer Linear Programming (MILP) formulation of the network and an algorithm for probabilistic lower bounds of MILP solution sets that we call MIPBound, which is considerably faster than exact counting and reaches values in similar orders of magnitude. Our second contribution is a tighter activation-based bound for the maximum number of linear regions, which is particularly stronger in networks with narrow layers. Combined, these bounds yield a fast proxy for the number of linear regions of a deep neural network.Comment: AAAI 202

    On organizing principles of Discrete Differential Geometry. Geometry of spheres

    Full text link
    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. In this survey we discuss the following two fundamental Discretization Principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem discussed in this survey is a discretization of curvature line parametrized surfaces in Lie geometry. We find a discretization of curvature line parametrization which unifies the circular and conical nets by systematically applying the Discretization Principles.Comment: 57 pages, 18 figures; In the second version the terminology is slightly changed and umbilic points are discusse
    • …
    corecore