37 research outputs found

    On The Hereditary Discrepancy of Homogeneous Arithmetic Progressions

    Full text link
    We show that the hereditary discrepancy of homogeneous arithmetic progressions is lower bounded by n1/O(loglogn)n^{1/O(\log \log n)}. This bound is tight up to the constant in the exponent. Our lower bound goes via proving an exponential lower bound on the discrepancy of set systems of subcubes of the boolean cube {0,1}d\{0, 1\}^d.Comment: To appear in the Proceedings of the American Mathematical Societ

    On largest volume simplices and sub-determinants

    Full text link
    We show that the problem of finding the simplex of largest volume in the convex hull of nn points in Qd\mathbb{Q}^d can be approximated with a factor of O(logd)d/2O(\log d)^{d/2} in polynomial time. This improves upon the previously best known approximation guarantee of d(d1)/2d^{(d-1)/2} by Khachiyan. On the other hand, we show that there exists a constant c>1c>1 such that this problem cannot be approximated with a factor of cdc^d, unless P=NPP=NP. % This improves over the 1.091.09 inapproximability that was previously known. Our hardness result holds even if n=O(d)n = O(d), in which case there exists a \bar c\,^{d}-approximation algorithm that relies on recent sampling techniques, where cˉ\bar c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d×nd\times n matrix

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    Nearly Optimal Private Convolution

    Full text link
    We study computing the convolution of a private input xx with a public input hh, while satisfying the guarantees of (ϵ,δ)(\epsilon, \delta)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time series of sensitive events or a histogram of a database of confidential personal information. Convolution then captures important primitives including linear filtering, which is an essential tool in time series analysis, and aggregation queries on projections of the data. We give a nearly optimal algorithm for computing convolutions while satisfying (ϵ,δ)(\epsilon, \delta)-differential privacy. Surprisingly, we follow the simple strategy of adding independent Laplacian noise to each Fourier coefficient and bounding the privacy loss using the composition theorem of Dwork, Rothblum, and Vadhan. We derive a closed form expression for the optimal noise to add to each Fourier coefficient using convex programming duality. Our algorithm is very efficient -- it is essentially no more computationally expensive than a Fast Fourier Transform. To prove near optimality, we use the recent discrepancy lowerbounds of Muthukrishnan and Nikolov and derive a spectral lower bound using a characterization of discrepancy in terms of determinants

    On Integer Programming, Discrepancy, and Convolution

    Full text link
    Integer programs with a constant number of constraints are solvable in pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial running time than previous results. Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be improved significantly. We show that further improvements to our pseudo-polynomial algorithm for any fixed number of constraints are equivalent to improvements for (min, +)-convolution. This is a strong evidence that our algorithm's running time is the best possible. We also present a faster specialized algorithm for testing feasibility of an integer program with few constraints and for this we also give a tight lower bound, which is based on the SETH.Comment: A preliminary version appeared in the proceedings of ITCS 201

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful
    corecore