1,452 research outputs found

    Spaceprint: a Mobility-based Fingerprinting Scheme for Public Spaces

    Get PDF
    In this paper, we address the problem of how automated situation-awareness can be achieved by learning real-world situations from ubiquitously generated mobility data. Without semantic input about the time and space where situations take place, this turns out to be a fundamental challenging problem. Uncertainties also introduce technical challenges when data is generated in irregular time intervals, being mixed with noise, and errors. Purely relying on temporal patterns observable in mobility data, in this paper, we propose Spaceprint, a fully automated algorithm for finding the repetitive pattern of similar situations in spaces. We evaluate this technique by showing how the latent variables describing the category, and the actual identity of a space can be discovered from the extracted situation patterns. Doing so, we use different real-world mobility datasets with data about the presence of mobile entities in a variety of spaces. We also evaluate the performance of this technique by showing its robustness against uncertainties

    Robust and Hierarchical Stop Discovery in Sparse and Diverse Trajectories

    Get PDF
    The advance of GPS tracking technique brings a large amount of trajectory data. To better understand such mobility data, semantic models like “stop/move” (or inferring “activity”, “transportation mode”) recently become a hot topic for trajectory data analysis. Stops are important parts of tra- jectories, such as “working at office”, “shopping in a mall”, “waiting for the bus”. There are several methods such as velocity, clustering, density algorithms being designed to discover stops. However, existing works focus on well-defined trajectories like movement of vehicle and taxi, not working well for heterogeneous cases like diverse and sparse trajectories. On the contrary, our paper addresses three main challenges: (1) provide a robust clustering-based method to discover stops; (2) discover both shared stops and personalized stops, where shared stops are the common places where many trajectories pass and stay for a while (e.g. shopping mall), whilst personalized stops are individual places where user stays for his/her own purpose (e.g. home, office); (3) further build stop hierarchy (e.g. a big stop like EPFL campus and a small stop like an office building). We evaluate our approach with several diverse and spare real-life GPS data, compare it with other methods, and show its better data abstraction on trajectory
    • …
    corecore