55,606 research outputs found

    Mining Target-Oriented Sequential Patterns with Time-Intervals

    Full text link
    A target-oriented sequential pattern is a sequential pattern with a concerned itemset in the end of pattern. A time-interval sequential pattern is a sequential pattern with time-intervals between every pair of successive itemsets. In this paper we present an algorithm to discover target-oriented sequential pattern with time-intervals. To this end, the original sequences are reversed so that the last itemsets can be arranged in front of the sequences. The contrasts between reversed sequences and the concerned itemset are then used to exclude the irrelevant sequences. Clustering analysis is used with typical sequential pattern mining algorithm to extract the sequential patterns with time-intervals between successive itemsets. Finally, the discovered time-interval sequential patterns are reversed again to the original order for searching the target patterns.Comment: 11 pages, 9 table

    Discovering Exclusive Patterns in Frequent Sequences

    Get PDF
    This paper presents a new concept for pattern discovery in frequent sequences with potentially interesting applications. Based on data mining, the approach aims to discover exclusive sequential patterns (ESP) by checking the relative exclusion of patterns across data sequences. ESP mining pursues the post-processing of sequential patterns and augments existing work on structural relations patterns mining. A three phase ESP mining method is proposed together with component algorithms, where a running worked example explains the process. Experiments are performed on real-world and synthetic datasets which showcase the results of ESP mining and demonstrate its effectiveness, illuminating the theories developed. An outline case study in workflow modelling gives some insight into future applicability

    Coming: a Tool for Mining Change Pattern Instances from Git Commits

    Full text link
    Software repositories such as Git have become a relevant source of information for software engineer researcher. For instance, the detection of Commits that fulfill a given criterion (e.g., bugfixing commits) is one of the most frequent tasks done to understand the software evolution. However, to our knowledge, there is not open-source tools that, given a Git repository, returns all the instances of a given change pattern. In this paper we present Coming, a tool that takes an input a Git repository and mines instances of change patterns on each commit. For that, Coming computes fine-grained changes between two consecutive revisions, analyzes those changes to detect if they correspond to an instance of a change pattern (specified by the user using XML), and finally, after analyzing all the commits, it presents a) the frequency of code changes and b) the instances found on each commit. We evaluate Coming on a set of 28 pairs of revisions from Defects4J, finding instances of change patterns that involve If conditions on 26 of them
    • 

    corecore