2 research outputs found

    Discovering Affordances Through Perception and Manipulation

    Get PDF
    International audienceConsidering perception as an observation process only is the very reason for which robotic perception methods are to date unable to provide a general capacity of scene understanding. Related work in neuroscience has shown that there is a strong relationship between perception and action. We believe that considering perception in relation to action requires to interpret the scene in terms of the agent's own potential capabilities. In this paper, we propose a Bayesian approach for learning sensorimotor representations through the interaction between action and observation capabilities. We represent the notion of affordance as a probabilistic relation between three elements: objects, actions and effects. Experiments for affordances discovery were performed on a real robotic platform in an unsupervised way assuming a limited set of innate capabilities. Results show dependency relations that connect the three elements in a common frame: affordances. The increasing number of interactions and observations results in a Bayesian network that captures the relationships between them. The learned representation can be used for prediction tasks

    Affordance Equivalences in Robotics: A Formalism

    Get PDF
    Automatic knowledge grounding is still an open problem in cognitive robotics. Recent research in developmental robotics suggests that a robot's interaction with its environment is a valuable source for collecting such knowledge about the effects of robot's actions. A useful concept for this process is that of an affordance, defined as a relationship between an actor, an action performed by this actor, an object on which the action is performed, and the resulting effect. This paper proposes a formalism for defining and identifying affordance equivalence. By comparing the elements of two affordances, we can identify equivalences between affordances, and thus acquire grounded knowledge for the robot. This is useful when changes occur in the set of actions or objects available to the robot, allowing to find alternative paths to reach goals. In the experimental validation phase we verify if the recorded interaction data is coherent with the identified affordance equivalences. This is done by querying a Bayesian Network that serves as container for the collected interaction data, and verifying that both affordances considered equivalent yield the same effect with a high probability
    corecore