1,851 research outputs found

    Discovering Communities of Community Discovery

    Get PDF
    Discovering communities in complex networks means grouping nodes similar to each other, to uncover latent information about them. There are hundreds of different algorithms to solve the community detection task, each with its own understanding and definition of what a "community" is. Dozens of review works attempt to order such a diverse landscape -- classifying community discovery algorithms by the process they employ to detect communities, by their explicitly stated definition of community, or by their performance on a standardized task. In this paper, we classify community discovery algorithms according to a fourth criterion: the similarity of their results. We create an Algorithm Similarity Network (ASN), whose nodes are the community detection approaches, connected if they return similar groupings. We then perform community detection on this network, grouping algorithms that consistently return the same partitions or overlapping coverage over a span of more than one thousand synthetic and real world networks. This paper is an attempt to create a similarity-based classification of community detection algorithms based on empirical data. It improves over the state of the art by comparing more than seventy approaches, discovering that the ASN contains well-separated groups, making it a sensible tool for practitioners, aiding their choice of algorithms fitting their analytic needs

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    Big networks : a survey

    Get PDF
    A network is a typical expressive form of representing complex systems in terms of vertices and links, in which the pattern of interactions amongst components of the network is intricate. The network can be static that does not change over time or dynamic that evolves through time. The complication of network analysis is different under the new circumstance of network size explosive increasing. In this paper, we introduce a new network science concept called a big network. A big networks is generally in large-scale with a complicated and higher-order inner structure. This paper proposes a guideline framework that gives an insight into the major topics in the area of network science from the viewpoint of a big network. We first introduce the structural characteristics of big networks from three levels, which are micro-level, meso-level, and macro-level. We then discuss some state-of-the-art advanced topics of big network analysis. Big network models and related approaches, including ranking methods, partition approaches, as well as network embedding algorithms are systematically introduced. Some typical applications in big networks are then reviewed, such as community detection, link prediction, recommendation, etc. Moreover, we also pinpoint some critical open issues that need to be investigated further. © 2020 Elsevier Inc

    Fundamental structures of dynamic social networks

    Get PDF
    Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.Comment: Main Manuscript: 16 pages, 4 figures. Supplementary Information: 39 pages, 34 figure

    Topological Anomaly Detection in Dynamic Multilayer Blockchain Networks

    Get PDF
    Motivated by the recent surge of criminal activities with cross-cryptocurrency trades, we introduce a new topological perspective to structural anomaly detection in dynamic multilayer networks. We postulate that anomalies in the underlying blockchain transaction graph that are composed of multiple layers are likely to also be manifested in anomalous patterns of the network shape properties. As such, we invoke the machinery of clique persistent homology on graphs to systematically and efficiently track evolution of the network shape and, as a result, to detect changes in the underlying network topology and geometry. We develop a new persistence summary for multilayer networks, called stacked persistence diagram, and prove its stability under input data perturbations. We validate our new topological anomaly detection framework in application to dynamic multilayer networks from the Ethereum Blockchain and the Ripple Credit Network, and demonstrate that our stacked PD approach substantially outperforms state-of-art techniques.Comment: 26 pages, 6 figures, 7 table
    corecore