3 research outputs found

    Discovering Salient Anatomical Landmarks by Predicting Human Gaze

    Full text link
    Anatomical landmarks are a crucial prerequisite for many medical imaging tasks. Usually, the set of landmarks for a given task is predefined by experts. The landmark locations for a given image are then annotated manually or via machine learning methods trained on manual annotations. In this paper, in contrast, we present a method to automatically discover and localize anatomical landmarks in medical images. Specifically, we consider landmarks that attract the visual attention of humans, which we term visually salient landmarks. We illustrate the method for fetal neurosonographic images. First, full-length clinical fetal ultrasound scans are recorded with live sonographer gaze-tracking. Next, a convolutional neural network (CNN) is trained to predict the gaze point distribution (saliency map) of the sonographers on scan video frames. The CNN is then used to predict saliency maps of unseen fetal neurosonographic images, and the landmarks are extracted as the local maxima of these saliency maps. Finally, the landmarks are matched across images by clustering the landmark CNN features. We show that the discovered landmarks can be used within affine image registration, with average landmark alignment errors between 4.1% and 10.9% of the fetal head long axis length.Comment: Accepted at IEEE International Symposium on Biomedical Imaging 2020 (ISBI 2020

    Gaze-probe joint guidance with multi-task learning in obstetric ultrasound scanning

    Get PDF
    In this work, we exploit multi-task learning to jointly predict the two decision-making processes of gaze movement and probe manipulation that an experienced sonographer would perform in routine obstetric scanning. A multimodal guidance framework, Multimodal-GuideNet, is proposed to detect the causal relationship between a real-world ultrasound video signal, synchronized gaze, and probe motion. The association between the multi-modality inputs is learned and shared through a modality-aware spatial graph that leverages useful cross-modal dependencies. By estimating the probability distribution of probe and gaze movements in real scans, the predicted guidance signals also allow inter- and intra-sonographer variations and avoid a fixed scanning path. We validate the new multi-modality approach on three types of obstetric scanning examinations, and the result consistently outperforms single-task learning under various guidance policies. To simulate sonographer’s attention on multi-structure images, we also explore multi-step estimation in gaze guidance, and its visual results show that the prediction allows multiple gaze centers that are substantially aligned with underlying anatomical structures

    Discovering salient anatomical landmarks by predicting human gaze

    No full text
    Anatomical landmarks are a crucial prerequisite for many medical imaging tasks. Usually, the set of landmarks for a given task is predefined by experts. The landmark locations for a given image are then annotated manually or via machine learning methods trained on manual annotations. In this paper, in contrast, we present a method to automatically discover and localize anatomical landmarks in medical images. Specifically, we consider landmarks that attract the visual attention of humans, which we term visually salient landmarks. We illustrate the method for fetal neurosonographic images. First, full-length clinical fetal ultrasound scans are recorded with live sonographer gaze-tracking. Next, a convolutional neural network (CNN) is trained to predict the gaze point distribution (saliency map) of the sonographers on scan video frames. The CNN is then used to predict saliency maps of unseen fetal neurosonographic images, and the landmarks are extracted as the local maxima of these saliency maps. Finally, the landmarks are matched across images by clustering the landmark CNN features. We show that the discovered landmarks can be used within affine image registration, with average landmark alignment errors between 4.1% and 10.9% of the fetal head long axis length
    corecore