23,721 research outputs found

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    A customisable pipeline for continuously harvesting socially-minded Twitter users

    Full text link
    On social media platforms and Twitter in particular, specific classes of users such as influencers have been given satisfactory operational definitions in terms of network and content metrics. Others, for instance online activists, are not less important but their characterisation still requires experimenting. We make the hypothesis that such interesting users can be found within temporally and spatially localised contexts, i.e., small but topical fragments of the network containing interactions about social events or campaigns with a significant footprint on Twitter. To explore this hypothesis, we have designed a continuous user profile discovery pipeline that produces an ever-growing dataset of user profiles by harvesting and analysing contexts from the Twitter stream. The profiles dataset includes key network and content-based users metrics, enabling experimentation with user-defined score functions that characterise specific classes of online users. The paper describes the design and implementation of the pipeline and its empirical evaluation on a case study consisting of healthcare-related campaigns in the UK, showing how it supports the operational definitions of online activism, by comparing three experimental ranking functions. The code is publicly available.Comment: Procs. ICWE 2019, June 2019, Kore

    A General Framework for Complex Network Applications

    Full text link
    Complex network theory has been applied to solving practical problems from different domains. In this paper, we present a general framework for complex network applications. The keys of a successful application are a thorough understanding of the real system and a correct mapping of complex network theory to practical problems in the system. Despite of certain limitations discussed in this paper, complex network theory provides a foundation on which to develop powerful tools in analyzing and optimizing large interconnected systems.Comment: 8 page

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks
    corecore