2,469 research outputs found

    InfoFlow: Mining Information Flow Based on User Community in Social Networking Services

    Get PDF
    Online social networking services (SNSs) have emerged rapidly and have become huge data sources for social network analysis. The spread of the content generated by users is crucial in SNS, but there is only a handful of research works on information diffusion and, more precisely, information diffusion flow. In this paper, we propose a novel method to discover information diffusion processes from SNS data. The method starts preprocessing the SNS data using a user-centric algorithm of community detection based on modularity maximization with the purpose of reducing the complexity of the noisy data. After that, the InfoFlow miner generates information diffusion flow models among the user communities discovered from the data. The algorithm is an extension of a traditional process discovery technique called the Flexible Heuristics miner, but the visualization ability of the generated process model is improved with a new measure called response weight, which effectively captures and represents the interactions among communities. An experiment with Facebook data was conducted, and information flow among user communities was visualized. Additionally, a quality assessment of the models was carried out to demonstrate the effectiveness of the method. The final constructed models allowed us to identify useful information such as how the information flows between communities and information disseminators and receptors within communities.11Ysciescopu

    Data-driven Computational Social Science: A Survey

    Get PDF
    Social science concerns issues on individuals, relationships, and the whole society. The complexity of research topics in social science makes it the amalgamation of multiple disciplines, such as economics, political science, and sociology, etc. For centuries, scientists have conducted many studies to understand the mechanisms of the society. However, due to the limitations of traditional research methods, there exist many critical social issues to be explored. To solve those issues, computational social science emerges due to the rapid advancements of computation technologies and the profound studies on social science. With the aids of the advanced research techniques, various kinds of data from diverse areas can be acquired nowadays, and they can help us look into social problems with a new eye. As a result, utilizing various data to reveal issues derived from computational social science area has attracted more and more attentions. In this paper, to the best of our knowledge, we present a survey on data-driven computational social science for the first time which primarily focuses on reviewing application domains involving human dynamics. The state-of-the-art research on human dynamics is reviewed from three aspects: individuals, relationships, and collectives. Specifically, the research methodologies used to address research challenges in aforementioned application domains are summarized. In addition, some important open challenges with respect to both emerging research topics and research methods are discussed.Comment: 28 pages, 8 figure

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Anomaly Detection in Streaming Sensor Data

    Full text link
    In this chapter we consider a cell phone network as a set of automatically deployed sensors that records movement and interaction patterns of the population. We discuss methods for detecting anomalies in the streaming data produced by the cell phone network. We motivate this discussion by describing the Wireless Phone Based Emergency Response (WIPER) system, a proof-of-concept decision support system for emergency response managers. We also discuss some of the scientific work enabled by this type of sensor data and the related privacy issues. We describe scientific studies that use the cell phone data set and steps we have taken to ensure the security of the data. We describe the overall decision support system and discuss three methods of anomaly detection that we have applied to the data.Comment: 35 pages. Book chapter to appear in "Intelligent Techniques for Warehousing and Mining Sensor Network Data" (IGI Global), edited by A. Cuzzocre

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE
    corecore