6,278 research outputs found

    Generalized Methods for Discovering Frequent Poly-Regions in DNA

    Full text link
    The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning

    Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao

    Full text link
    In order to increase the efficiency of cacao tree resistance to witches¿ broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease. (Résumé d'auteur

    Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.

    Get PDF
    Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers

    Discovery of short pseudogenes derived from messenger RNAs

    Get PDF
    More than 40% of the human genome is generated by retrotransposition, a series of in vivo processes involving reverse transcription of RNA molecules and integration of the transcripts into the genomic sequence. The mechanism of retrotransposition, however, is not fully understood, and additional genomic elements generated by retrotransposition may remain to be discovered. Here, we report that the human genome contains many previously unidentified short pseudogenes generated by retrotransposition of mRNAs. Genomic elements generated by non-long terminal repeat retrotransposition have specific sequence signatures: a poly-A tract that is immediately downstream and a pair of duplicated sequences, called target site duplications (TSDs), at either end. Using a new computer program, TSDscan, that can accurately detect pseudogenes based on the presence of the poly-A tract and TSDs, we found 654 short (≤300 bp), previously unknown pseudogenes derived from mRNAs. Comprehensive analyses of the pseudogenes that we identified and their parent mRNAs revealed that the pseudogene length depends on the parent mRNA length: long mRNAs generate more short pseudogenes than do short mRNAs. To explain this phenomenon, we hypothesize that most long mRNAs are truncated before they are reverse transcribed. Truncated mRNAs would be rapidly degraded during reverse transcription, resulting in the generation of short pseudogenes

    High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation

    Get PDF
    Cis-regulatory modules (CRMs) function by binding sequence specific transcription factors, but the relationship between in vivo physical binding and the regulatory capacity of factor-bound DNA elements remains uncertain. We investigate this relationship for the well-studied Twist factor in Drosophila melanogaster embryos by analyzing genome-wide factor occupancy and testing the functional significance of Twist occupied regions and motifs within regions. Twist ChIP-seq data efficiently identified previously studied Twist-dependent CRMs and robustly predicted new CRM activity in transgenesis, with newly identified Twist-occupied regions supporting diverse spatiotemporal patterns (>74% positive, n = 31). Some, but not all, candidate CRMs require Twist for proper expression in the embryo. The Twist motifs most favored in genome ChIP data (in vivo) differed from those most favored by Systematic Evolution of Ligands by EXponential enrichment (SELEX) (in vitro). Furthermore, the majority of ChIP-seq signals could be parsimoniously explained by a CABVTG motif located within 50 bp of the ChIP summit and, of these, CACATG was most prevalent. Mutagenesis experiments demonstrated that different Twist E-box motif types are not fully interchangeable, suggesting that the ChIP-derived consensus (CABVTG) includes sites having distinct regulatory outputs. Further analysis of position, frequency of occurrence, and sequence conservation revealed significant enrichment and conservation of CABVTG E-box motifs near Twist ChIP-seq signal summits, preferential conservation of ±150 bp surrounding Twist occupied summits, and enrichment of GA- and CA-repeat sequences near Twist occupied summits. Our results show that high resolution in vivo occupancy data can be used to drive efficient discovery and dissection of global and local cis-regulatory logic

    Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species

    Get PDF
    Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species' contrasting population histories

    CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention

    Get PDF
    The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization

    Sequence analysis and genomic organization of Aphid lethal paralysis virus: a new member of the family Dicistroviridae

    Get PDF
    The complete nucleotide sequence of the genomic RNA of an aphid-infecting virus, Aphid lethal paralysis virus (ALPV), has been determined. The genome is 9812 nt in length and contains two long open reading frames (ORFs), which are separated by an intergenic region of 163 nt. The first ORF (5' ORF) is preceded by an untranslated leader sequence of 506 nt, while an untranslated region of 571 nt follows the second ORF (3' ORF). The deduced amino acid sequences of the 5' ORF and 3' ORF products respectively showed similarity to the non-structural and structural proteins of members of the newly recognized genus Cripavirus (family Dicistroviridae). On the basis of the observed sequence similarities and identical genome organization, it is proposed that ALPV belongs to this genus. Phylogenetic analysis showed that ALPV is most closely related to Rhopalosiphum padi virus, and groups in a cluster with Drosophila C virus and Cricket paralysis virus, while the other members of this genus are more distantly related. Infectivity experiments showed that ALPV can not only infect aphid species but is also able to infect the whitefly Trialeurodes vaporariorum, extending its host range to another family of the order Hemipter

    Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica

    Get PDF
    Alternative splicing and polyadenylation were observed pervasively in eukaryotic messenger RNAs. These alternative isoforms could either be consequences of physiological regulation or stochastic noise of RNA processing. To quantify the extent of stochastic noise in splicing and polyadenylation, we analyzed the alternative usage of splicing and polyadenylation sites in Entamoeba histolytica using RNA-Seq. First, we identified a large number of rarely spliced alternative junctions and then showed that the occurrence of these alternative splicing events is correlated with splicing site sequence, occurrence of constitutive splicing events and messenger RNA abundance. Our results implied the majority of these alternative splicing events are likely to be stochastic error of splicing machineries, and we estimated the corresponding error rates. Second, we observed extensive microheterogeneity of polyadenylation cleavage sites, and the extent of such microheterogeneity is correlated with the occurrence of constitutive cleavage events, suggesting most of such microheterogeneity is likely to be stochastic. Overall, we only observed a small fraction of alternative splicing and polyadenylation isoforms that are unlikely to be solely stochastic, implying the functional relevance of alternative splicing and polyadenylation in E. histolytica is limited. Lastly, we revised the gene models and annotated their 3′UTR in AmoebaDB, providing valuable resources to the community
    corecore