2,583 research outputs found

    Exploring the Role of Communication in Crisis Readiness

    Get PDF
    The goal of this study was to examine the role of communication in campus crisis readiness at an institution of higher learning that experienced a major crisis. In order to have a good understanding of the issues, the challenges, and the breakthroughs, the researcher interviewed an institution’s executives who had emergency and crisis readiness responsibilities. This study was designed as a case study to gain an in depth understanding of what prevails based on three instruments: interviews, online questionnaire, and document analysis. This study involved eight interviewees in a sit-down interview and 21 respondents in an anonymous online questionnaire. Evidence indicates the institution has made significant strides in the areas of communicating with stakeholders, engaging and monitoring of the social media, and making extensive use of technology in building a culture of campus crisis readiness. Respondents credited leadership for taking decisive action after the previous incident that served as a turning point in the institution’s history of crisis readiness

    Leveraging Crowdsourcing and Crowdsensing Data for HADR Operations in a Smart City Environment

    Get PDF
    The future of the world's population concentration lies within the bounds of urban cities. Citizens, or humans, are the most important tangible resources in a smart city environment, and they need to be served as well as protected. The concept of smart cities is trying to accomplish the idea of serving the citizens by leveraging the potential of information and communications technology assets. Citizens have access to smart technologies and applications, and thus they form an indispensable component to complement and supplement a smart city's operation. Especially in humanitarian assistance and disaster recovery (HADR) operations, where a smart city's core infrastructure might be compromised, the assets of citizens can be put to use. This article aims to describe the current state of affairs for safety in cities and humanitarian assistance in emergency situations, which require leveraging situational awareness data. We discuss and propose mechanisms for connecting to and utilizing crowdsourcing and crowdsensing data in a smart city environment, which can assist in efficient HADR operations

    ICT for Disaster Risk Management:The Academy of ICT Essentials for Government Leaders

    Get PDF

    ICT Update 71: Small islands and e-resilience

    No full text
    ICT Update is a bimonthly printed and on line magazine (http://ictupdate.cta.int) and an accompanying email newsletter published by CTA. This issue focuses on small islands and e-resilience

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    • 

    corecore