12,127 research outputs found

    Profit-oriented disassembly-line balancing

    Get PDF
    As product and material recovery has gained importance, disassembly volumes have increased, justifying construction of disassembly lines similar to assembly lines. Recent research on disassembly lines has focused on complete disassembly. Unlike assembly, the current industry practice involves partial disassembly with profit-maximization or cost-minimization objectives. Another difference between assembly and disassembly is that disassembly involves additional precedence relations among tasks due to processing alternatives or physical restrictions. In this study, we define and solve the profit-oriented partial disassembly-line balancing problem. We first characterize different types of precedence relations in disassembly and propose a new representation scheme that encompasses all these types. We then develop the first mixed integer programming formulation for the partial disassembly-line balancing problem, which simultaneously determines (1) the parts whose demand is to be fulfilled to generate revenue, (2) the tasks that will release the selected parts under task and station costs, (3) the number of stations that will be opened, (4) the cycle time, and (5) the balance of the disassembly line, i.e. the feasible assignment of selected tasks to stations such that various types of precedence relations are satisfied. We propose a lower and upper-bounding scheme based on linear programming relaxation of the formulation. Computational results show that our approach provides near optimal solutions for small problems and is capable of solving larger problems with up to 320 disassembly tasks in reasonable time

    A bibliographic review of production line design and balancing under uncertainty

    Get PDF
    This bibliography reviews the solution methods developed for the design and balancing problems of production lines such as assembly and disassembly lines. The line design problem aims in determining the number of workstations along with the corresponding assignment of tasks to each workstation, while the line balancing problem seeks an assignment of tasks, to the existing workstations of the line, which ensures that the workloads are as equal as possible among the workstations. These two optimisation problems can be also integrated and treated as a multi-objective optimisation problem. This review considers both deterministic and stochastic formulations for disassembly lines and is limited to assembly line design and balancing under uncertainty. This bibliography covers more than 90 publications since 1976 for assembly and 1999 for disassembly

    Applying equal piles approach to disassembly line balancing problem.

    No full text
    International audienceDisassembly process decomposes a product into parts or subassemblies. Due to the uncertainties that occur during this process, designing and balancing a disassembly line is a very challenging problem. To deal with the disassembly line balancing problem a new method which relies on the equal piles approach is proposed

    Second order conic approximation for disassembly line design with joint probabilistic constraints

    Get PDF
    A problem of profit oriented disassembly line design and balancing with possible partial disassembly and presence of hazardous parts is studied. The objective is to design a production line providing a maximal revenue with balanced workload. Task times are assumed to be random variables with known normal probability distributions. The cycle time constraints are to be jointly satisfied with at least a predetermined probability level. An AND/OR graph is used to model the precedence relationships among tasks. Several lower and upper–bounding schemes are developed using second order cone programming and convex piecewise linear approximation. To show the relevance and applicability of the proposed approach, a set of instances from the literature are solved to optimality

    Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Full text link
    The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of theoptimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control

    Disposition Choices Based on Energy Footprints instead of Recovery Quota

    Get PDF
    This paper addresses the impact of disposition choices on the energy use of closed-loop supply chains. In a life cycle perspective, energy used in the forward chain which is locked up in the product is recaptured in recovery. High quality recovery replaces virgin production and thereby saves energy. This so called substitution effect is often ignored. Governments worldwide implement Extended Producer Responsibility (EPR). Policies are based on recovery quota and not effective from an energy point of view. This in turn leads to unnecessary emissions of amongst others CO2. This research evaluates current EPR policies and presents six policy alternatives from an energy standpoint. The Pareto-frontier model used is generic and can be applied to other closed loops supply chains under EPR, exploiting the substitution effect. The measures modeled are applied to five WEEE cases. We discuss results, pros an cons of various alternatives and complementary measures that might be taken.extended producer responsibility;disposition;energy perspective;substitution effect;government policies;Pareto efficiency

    A real time solution to control disassembly processes.

    No full text
    International audienceDisassembly of manufactured products induces both disassembly costs and revenues from the parts saved by the process. At the planning stage a good trade-off has to be found between the costs of disassembly and the final profit. At the control stage it is important to assure an optimal balance of the line as well as the complete disassembly processing during the rest of the working time. A real time control method based on modeling of disassembly by the precedence graph and on a stochastic algorithm is presented in this article

    Collection-disassembly problem in reverse supply chain

    Get PDF
    The reverse supply chain and disassembly processes are getting more and more important for tackling the burden of waste electrical and electronic equipment. The disassembly's complexity and frequent manual operation makes this process relatively expensive compared to its potential profit. The collection of end-of-life product is also a big issue dealing with vehicle routing. Thus, the decisions taken for collection and disassembly of end-of-life products need to be optimised. In this work, an optimisation model is developed for incorporating these problems. Our experimental study shows joint optimisation of collection and disassembly with coordination between them improves the global performance of the reverse supply chain including lower total cost corresponding to the component demand satisfaction

    Disassembly line scheduling with genetic algorithms.

    Get PDF
    International audienceDisassembly is part of the demanufacturing and it is meant to obtain components and materials from end-of-line products. An essential performance objective of a disassembly process is the benefits it brings, that is the revenue brought by the retrieved parts and material, diminished by the cost of their retrieval operations. A decision must be taken to balance an automatic disassembly line. A well balanced line will decrease the cost of disassembly operations. An evolutionary (genetic) algorithm is used to deal with the multi-criteria optimization problem of the disassembly scheduling
    corecore