3 research outputs found

    Disappearing Textile Interface with Inherent Feedforwards

    No full text
    Currently, interactive devices can easily disappear into a wide range of physical context due to the development of microcontrollers, sensors and actuators. However, this disappearing interaction scenario may cause confusion to the users regarding where and how to interact with it. Therefore, a research project has been conducted to investigate different inherent feedforwards for this disappearing interaction scenario in textile surfaces. A Tangible User Interface (TUI) for volume adjusting was designed, which can provide both visual and shape-changing feedforwards. This interface can be implemented in ubiquitous soft surfaces, in this demo, a textile-based Human-Machine Interaction (HMI) in the vehicle seat. The textile interface provides a both natural and enjoyable HMI concept. This report describes the theoretical background, prototype, user test and demo setup and contribution

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore