162,878 research outputs found
Recommended from our members
Cell migration directionality and speed are independently regulated by RasG and Gβ in Dictyostelium cells in electrotaxis.
Motile cells manifest increased migration speed and directionality in gradients of stimuli, including chemoattractants, electrical potential and substratum stiffness. Here, we demonstrate that Dictyostelium cells move directionally in response to an electric field (EF) with specific acceleration/deceleration kinetics of directionality and migration speed. Detailed analyses of the migration kinetics suggest that migration speed and directionality are separately regulated by Gβ and RasG, respectively, in EF-directed cell migration. Cells lacking Gβ, which is essential for all chemotactic responses in Dictyostelium, showed EF-directed cell migration with the same increase in directionality in an EF as wild-type cells. However, these cells failed to show induction of the migration speed upon EF stimulation as much as wild-type cells. Loss of RasG, a key regulator of chemoattractant-directed cell migration, resulted in almost complete loss of directionality, but similar acceleration/deceleration kinetics of migration speed as wild-type cells. These results indicate that Gβ and RasG are required for the induction of migration speed and directionality, respectively, in response to an EF, suggesting separation of migration speed and directionality even with intact feedback loops between mechanical and signaling networks
Influence of microphone housing on the directional response of piezoelectric mems microphones inspired by Ormia ochracea
The influence of custom microphone housings on the acoustic directionality and frequency response of a multiband bio-inspired MEMS microphone is presented. The 3.2 mm by 1.7 mm piezoelectric MEMS microphone, fabricated by a cost-effective multi-user process, has four frequency bands of operation below 10 kHz, with a desired first-order directionality for all four bands. 7×7×2.5 mm3 3-D-printed bespoke housings with varying acoustic access to the backside of the microphone membrane are investigated through simulation and experiment with respect to their influence on the directionality and frequency response to sound stimulus. Results show a clear link between directionality and acoustic access to the back cavity of the microphone. Furthermore, there was a change in direction of the first-order directionality with reduced height in this back cavity acoustic access. The required configuration for creating an identical directionality for all four frequency bands is investigated along with the influence of reducing the symmetry of the acoustic back cavity access. This paper highlights the overall requirement of considering housing geometries and their influence on acoustic behavior for bio-inspired directional microphones
The directionality of distinctively mathematical explanations
In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each case by appeal to ontic facts that account for why the explanation is acceptable in one direction and unacceptable in the other direction. The mathematics involved in these examples cannot play this crucial normative role. While Lange's examples fail to demonstrate the existence of distinctively mathematical explanations, they help to emphasize that many superficially natural scientific explanations rely for their explanatory force on relations of stronger-than-natural necessity. These are not opposing kinds of scientific explanations; they are different aspects of scientific explanation
Photoluminescence modification by high-order photonic band with abnormal dispersion in ZnO inverse opal
We measured the angle- and polarization-resolved reflection and
photoluminescence spectra of ZnO inverse opals. Significant enhancement of
spontaneous emission is observed. The enhanced emission not only has good
directionality but also can be linearly polarized. A detailed theoretical
analysis and numerical simulation reveal that such enhancement is caused by the
abnormal dispersion of a high-order photonic band. The frozen mode at a
stationary inflection point of a dispersion curve can strongly modify the
intensity, directionality and polarization of spontaneous emission.Comment: 22 pages, 11 figures, figures modified, references added, more
explanation adde
Josephson parametric reflection amplifier with integrated directionality
A directional superconducting parametric amplifier in the GHz frequency range
is designed and analyzed, suitable for low-power read-out of microwave kinetic
inductance detectors employed in astrophysics and when combined with a
nonreciprocal device at its input also for circuit quantum electrodynamics
(cQED). It consists of an one wavelength long nondegenerate Josephson
parametric reflection amplifier circuit. The device has two Josephson junction
oscillators, connected via a tailored impedance to an on-chip passive circuit
which directs the in- to the output port. The amplifier provides a gain of 20
dB over a bandwidth of 220 MHz on the signal as well as on the idler portion of
the amplified input and the total photon shot noise referred to the input
corresponds to maximally 1.3 photons per second per Hertz of bandwidth. We
predict a factor of four increase in dynamic range compared to conventional
Josephson parametric amplifiers.Comment: Main article (5 pages plus 2 pages references) plus supplemental
material (14 pages
Moral Directionality in the Doctor -Patient Relationship
In this paper I propose to examine three models of the doctor patient relationship. After a descriptive characterization of the alternative models, I will offer a series of arguments to support the claim that there is a moral priority of one model over the others, viz. the model of mutual participation
An Optimization Method of Asymmetric Resonant Cavities for Unidirectional Emission
In this paper, we studied the repeatability and accuracy of the ray
simulation for one kind of Asymmetric Resonant Cavities (ARCs)
Half-Quadrupole-Half-Circle shaped cavity, and confirmed the robustness of the
directionality about the shape errors. Based on these, we proposed a
hill-climbing algorithm to optimize the ARCs for unidirectional emission.
Different evaluation functions of directionality were tested and we suggested
using the function of energy contained in a certain angle for highly collimated
and unidirect ional emission. By this method, we optimized the ARCs to obtain
about 0.46 of the total radiated energy in divergence angle of 40 degree in the
far field. This optimization method is very powerful for the shape engineering
of ARCs and could be applied in future studies of ARCs with specific emission
properties
- …
