1,185 research outputs found

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces

    Performance Analysis of the Decentralized Eigendecomposition and ESPRIT Algorithm

    Full text link
    In this paper, we consider performance analysis of the decentralized power method for the eigendecomposition of the sample covariance matrix based on the averaging consensus protocol. An analytical expression of the second order statistics of the eigenvectors obtained from the decentralized power method which is required for computing the mean square error (MSE) of subspace-based estimators is presented. We show that the decentralized power method is not an asymptotically consistent estimator of the eigenvectors of the true measurement covariance matrix unless the averaging consensus protocol is carried out over an infinitely large number of iterations. Moreover, we introduce the decentralized ESPRIT algorithm which yields fully decentralized direction-of-arrival (DOA) estimates. Based on the performance analysis of the decentralized power method, we derive an analytical expression of the MSE of DOA estimators using the decentralized ESPRIT algorithm. The validity of our asymptotic results is demonstrated by simulations.Comment: 18 pages, 5 figures, submitted for publication in IEEE Transactions on Signal Processin

    Comparative study between Direction of arrival for wide band & narrow band Signal using Music Algorithm

    Get PDF
    Direction of arrival is a key parameter in array signal processing. It is one of the important problem in field such as sonar, radar and wireless communication. Traditional DOA estimation algorithm consists of large no of snapshot and are not reliable in application such as underwater array processing. There are many sources such as seismic wave ,acoustic signals, speech and signal processing which is wide band signal and estimation parameters such as snapshot ,side lobes, resolution is an important task. In the recent advancement of technology wide band signal are more favoured over narrow band signals. Wide band signal are able to estimate  DoAs efficiently with less side lobes and snapshots. In this paper a comparative analysis of direction of arrival for wide band and narrow band by analysing angular spectrum of MUSIC algorithm. We will   estimate the position of spectral with different scanning grid size. We will search the spectral peak position and estimates final DOA Therefore it become important to study and analyzed wide band signal specially application such as 5G m-MIMO systems
    • …
    corecore