467,881 research outputs found

    Directed path graphs

    Get PDF
    The concept of a line digraph is generalized to that of a directed path graph. The directed path graph Pk(D)\overrightarrow P_k(D) of a digraph D is obtained by representing the directed paths on k vertices of D by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in D form a directed path on k + 1 vertices or form a directed cycle on k vertices in D. Several properties of Pk(D)\overrightarrow P_k(D) are studied, in particular with respect to isomorphism and traversability

    Priors on exchangeable directed graphs

    Full text link
    Directed graphs occur throughout statistical modeling of networks, and exchangeability is a natural assumption when the ordering of vertices does not matter. There is a deep structural theory for exchangeable undirected graphs, which extends to the directed case via measurable objects known as digraphons. Using digraphons, we first show how to construct models for exchangeable directed graphs, including special cases such as tournaments, linear orderings, directed acyclic graphs, and partial orderings. We then show how to construct priors on digraphons via the infinite relational digraphon model (di-IRM), a new Bayesian nonparametric block model for exchangeable directed graphs, and demonstrate inference on synthetic data.Comment: 27 pages, 11 figure

    Routing Symmetric Demands in Directed Minor-Free Graphs with Constant Congestion

    Get PDF
    The problem of routing in graphs using node-disjoint paths has received a lot of attention and a polylogarithmic approximation algorithm with constant congestion is known for undirected graphs [Chuzhoy and Li 2016] and [Chekuri and Ene 2013]. However, the problem is hard to approximate within polynomial factors on directed graphs, for any constant congestion [Chuzhoy, Kim and Li 2016]. Recently, [Chekuri, Ene and Pilipczuk 2016] have obtained a polylogarithmic approximation with constant congestion on directed planar graphs, for the special case of symmetric demands. We extend their result by obtaining a polylogarithmic approximation with constant congestion on arbitrary directed minor-free graphs, for the case of symmetric demands
    corecore