49,742 research outputs found
Petrol Direct Injection
Tato bakalářská práce se zabývá přímým vstřikováním benzínu u osobních automobilů. V první kapitole se dozvíme o historii přímého vstřikování benzínu a vývoji jednotlivých automobilových koncepcí. Dále se zaměříme na vznik směsí paliva se vzduchem a podrobněji rozebereme celý vstřikovací systém. Obsahem mé práce je také seznam vybraných motorů využívajících přímého vstřikování benzínu. Poslední kapitola je zaměřena především na budoucí vývoj přímého vstřikování benzínu u vznětových motorů.This bachelor thesis is about the system of direct injection petrol engines within cars. The first chapter is designated to the history of the direct injection petrol system and the development of different concepts. The thesis then concentrates on the mixing of air with fuel and describes the injection system in detail. Within the content of my work is a list of specific engines, using the direct injection system. The last chapter is devoted to the future development of direct injection petrol system and those with the compression-ignition system.
Hydrogen SI and HCCI Combustion in a Direct-Injection Optical Engine
Hydrogen has been largely proposed as a possible alternative fuel for internal combustion engines. Its wide flammability range allows higher engine efficiency with leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. Independently, Homogenous Charge Compression Ignition (HCCI) also allows higher thermal efficiency and lower fuel consumption with reduced NOX emissions when compared to Spark-Ignition (SI) engine operation. For HCCI combustion, a mixture of air and fuel is supplied to the cylinder and autoignition occurs from compression; engine is operated throttle-less and load is controlled by the quality of the mixture, avoiding the large fluid-dynamic losses in the intake manifold of SI engines. HCCI can be induced and controlled by varying the mixture temperature, either by Exhaust Gas Recirculation (EGR) or intake air pre-heating. A combination of HCCI combustion with hydrogen fuelling has great potential for virtually zero CO2 and NOX emissions. Nevertheless, combustion on such a fast burning fuel with wide flammability limits and high octane number implies many disadvantages, such as control of backfiring and speed of autoignition and there is almost no literature on the subject, particularly in optical engines. Experiments were conducted in a single-cylinder research engine equipped with both Port Fuel Injection (PFI) and Direct Injection (DI) systems running at 1000 RPM. Optical access to in-cylinder phenomena was enabled through an extended piston and optical crown. Combustion images were acquired by a high-speed camera at 1°or 2°crank angle resolution for a series of engine cycles. Spark-ignition tests were initially carried out to benchmark the operation of the engine with hydrogen against gasoline. DI of hydrogen after intake valve closure was found to be preferable in order to overcome problems related to backfiring and air displacement from hydrogens low density. HCCI combustion of hydrogen was initially enabled by means of a pilot port injection of n-heptane preceding the main direct injection of hydrogen, along with intake air preheating. Sole hydrogen fuelling HCCI was finally achieved and made sustainable, even at the low compression ratio of the optical engine by means of closed-valve DI, in synergy with air-pre-heating and negative valve overlap to promote internal EGR. Various operating conditions were analysed, such as fuelling in the range of air excess ratio 1.2-3.0 and intake air temperatures of 200-400°C. Finally, both single and double injections per cycle were compared to identify their effects on combustion development. Copyright © 2009 SAE International
Spray characteristics of a multi-hole injector for direct-injection gasoline engines
The sprays from a high-pressure multi-hole nozzle injected into a constant-volume chamber have been visualized and quantified in terms of droplet velocity and diameter with a two-component phase Doppler anemometry (PDA) system at injection pressures up to 200 bar and chamber pressures varying from atmospheric to 12 bar. The flow characteristics within the injection system were quantified by means of a fuel injection equipment (FIE) one-dimensional model, providing the injection rate and the injection velocity in the presence of hole cavitation, by an in-house three-dimensional computational fluid dynamics (CFD) model providing the detailed flow distribution for various combinations of nozzle hole configurations, and by a fuel atomization model giving estimates of the droplet size very near to the nozzle exit. The overall spray angle relative to the axis of the injector was found to be almost independent of injection and chamber pressure, a significant advantage relative to swirl pressure atomizers. Temporal droplet velocities were found to increase sharply at the start of injection and then to remain unchanged during the main part of injection, before decreasing rapidly towards the end of injection. The spatial droplet velocity profiles were jet-like at all axial locations, with the local velocity maximum found at the centre of the jet. Within the measured range, the effect of injection pressure on droplet size was rather small while the increase in chamber pressure from atmospheric to 12 bar resulted in much smaller droplet velocities, by up to four-fold, and larger droplet sizes by up to 40 per cent
Recommended from our members
Catalyzed Gasoline Particulate Filters Reduce Secondary Organic Aerosol Production from Gasoline Direct Injection Vehicles
The
effects of photochemical aging on exhaust emissions from two
light-duty vehicles with gasoline direct injection (GDI) engines equipped
with and without catalyzed gasoline particle filters (GPFs) were investigated
using a mobile environmental chamber. Both vehicles with and without
the GPFs were exercised over the LA92 drive cycle using a chassis
dynamometer. Diluted exhaust emissions from the entire LA92 cycle
were introduced to the mobile chamber and subsequently photochemically
reacted. It was found that the addition of catalyzed GPFs will significantly
reduce tailpipe particulate emissions and also provide benefits in
gaseous emissions, including nonmethane hydrocarbons (NMHC). Tailpipe
emissions composition showed important changes with the use of GPFs
by practically eliminating black carbon and increasing the fractional
contribution of organic mass. Production of secondary organic aerosol
(SOA) was reduced with GPF addition, but was also dependent on engine
design which determined the amount of SOA precursors at the tailpipe.
Our findings indicate that SOA production from GDI vehicles will be
reduced with the application of catalyzed GPFs through the mitigation
of reactive hydrocarbon precursors
CAI combustion with methanol and ethanol in an air-assisted direct injection SI engine
Copyright © 2009 SAE International. This paper is posted on this site with permission from SAE International. Further use of this paper is not permitted without permission from SAECAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace. The experimental results show that both oxygenate fuels, methanol and ethanol, can lead to CAI combustion as well as gasoline fuel. The load of CAI combustion was increased and emissions were lower with the two oxygenate fuels. Methanol was found to have highest output and lowest energy consumption among the three fuels tested. CAI combustion characteristics of the oxygenate fuels were more affected by the amount of burnt residuals trapped than that of gasoline fuel
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
Optical pumping of charged excitons in unintentionally doped InAs quantum dots
As an alternative to commonly used electrical methods, we have investigated
the optical pumping of charged exciton complexes addressing impurity related
transitions with photons of the appropriate energy. Under these conditions, we
demonstrate that the pumping fidelity can be very high while still maintaining
a switching behavior between the different excitonic species. This mechanism
has been investigated for single quantum dots of different size present in the
same sample and compared with the direct injection of spectator electrons from
nearby donors.Comment: 4 pages and 3 figures submitted to AP
High-power Ka-band amplifier
Development of a high-power tube suitable to power a Ka-band (34.5-GHz) antenna transmitter located at the Goldstone, California, tracking station is continuing. The University of Maryland Laboratory for Plasma Research and JPL are conducting a joint effort to test the feasibility of phase locking a second-harmonic gyrotron both by direct injection at the output cavity and by using a priming cavity to bunch the electrons in the beam. This article describes several design options and the results of computer simulation testing
Study of γ-Valerolactone as a Diesel Blend: Engine Performance and Emission Characteristics
γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyser. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emissions, but reduced the concentration of CO and smoke significantly
- …
