5 research outputs found

    System-Level Design of All-Digital LTE / LTE-A Transmitter Hardware

    Get PDF
    This thesis presents a detailed system-level analysis of an all-digital transmitter hardware based on the Direct-Digital RF-Modulator (DDRM). The purpose of the presented analysis is to evaluate whether this particular transmitter architecture is suitable to be used in LTE / LTE-A mobile phones. The DDRM architecture is based on the Radio Frequency Digital-to-Analog Converter (RF-DAC), whose system-level characteristics are investigated in this work through mathematical analysis and MATLAB simulations. In particular, a new analytical model for the timing error in the distributed upconversion is developed and verified. Moreover, this thesis reviews the LTE and LTE-A standards, and describes how a baseband environment for signal generation/demodulation can be implemented in MATLAB. The presented system enables much more flexibility with respect to current commercial softwares like Agilent Signal Studio. Simulation results show that the most challenging specification to meet is the out-of-band noise floor, because of the stringent linearity and timing requirements posed on the RF-DAC. This suggests that new means of reducing the out-of-band noise in all-digital transmitters should be researched, in order not to make their design more complicated than for their analog counterpart

    Digital Radio Encoding and Power Amplifier Design for Multimode and Multiband Wireless Communications

    Get PDF
    The evolution of wireless technology has necessitated the support of multiple communication standards by mobile devices. At present, multiple chipsets/radios operating at predefined sets of modulation schemes, frequency bands, bandwidths and output power levels are used to achieve this objective. This leads to higher component counts, increased cost and limits the capacity to cope with future communication standards. In order to tackle different wireless standards using a single chipset, digital circuits have been increasingly deployed in radios and demonstrated re-configurability in different modulation schemes (multimode) and frequency bands (multiband). Despite efforts and progress made in digitizing the entire radio, the power amplifier (PA) is still designed using an conventional approach and has become the bottleneck in digital transmitters, in terms of low average power efficiency, poor compatibility with modern CMOS technology and limited re-configurability. This research addresses these issues from two aspects. The first half of the thesis investigates signal encoding issues between the modulator and PA. We propose, analyze and evaluate a new hybrid amplitude/time signal encoding scheme that significantly improves the coding efficiency and dynamic range of a digitally modulated power amplifier (DMPA) without significantly increasing design complexity. The proposed hybrid amplitude/time encoding scheme combines both the amplitude domain and the time domain to optimally encode information. Experimental results show that hybrid amplitude/time encoding results in a 35% increase in the average coding efficiency with respect to conventional time encoding, and is only 6.7% lower than peak efficiency when applied to a Wireless Local Area Network (WLAN) signal with a peak to average power ratio equal to 9.9 dB. A new DMPA architecture, based on the proposed hybrid encoding, is also proposed. The second half of this thesis presents the design, analysis and implementation of a CMOS PA that is amenable to the proposed hybrid encoding scheme. A multi-way current mode class-D PA architecture has been proposed and realized in 130 nm CMOS technology. The designed PA has satisfied the objectives of wide bandwidth (1.5 GHz - 2.7 GHz at 1 dB output power), and high efficiency (PAE 63%) in addition to demonstrating linear responses using the proposed digital encoding. A complete digital transmitter combining the encoder and the multi-way PA was also investigated. The overall efficiency is 27% modulating 7.3 dB peak to average power ratio QAM signals

    A Wideband IQ-Mapping Direct-Digital RF Modulator for 5G Transmitters

    No full text
    This article presents a wideband 2× 12 -bit direct-digital RF modulator (DDRM) operating in a 0.5-to-3-GHz band for 5G transmitters. The proposed digital Cartesian modulator features an advanced IQ-mapping technique to boost RF power by 3 dB and suppress the I/Q image. To verify the proposed concept, a 40-nm CMOS prototype is implemented whose RF peak output power at 2 GHz is more than 14 dBm. It achieves an adjacent-channel leakage ratio (ACLR) of -52 dBc and an error vector magnitude (EVM) of -40 dB for a 20-MHz 256-QAM signal at 2.4 GHz. With a 320-MHz 256-QAM signal, the measured ACLR and EVM performances are better than -43 dBc and -32 dB at 2.4 GHz, respectively, without using any digital pre-distortion.Electronic

    A Wideband IQ-Mapping Direct-Digital RF Modulator for 5G Transmitters

    No full text
    This article presents a wideband 2× 12 -bit direct-digital RF modulator (DDRM) operating in a 0.5-to-3-GHz band for 5G transmitters. The proposed digital Cartesian modulator features an advanced IQ-mapping technique to boost RF power by 3 dB and suppress the I/Q image. To verify the proposed concept, a 40-nm CMOS prototype is implemented whose RF peak output power at 2 GHz is more than 14 dBm. It achieves an adjacent-channel leakage ratio (ACLR) of -52 dBc and an error vector magnitude (EVM) of -40 dB for a 20-MHz 256-QAM signal at 2.4 GHz. With a 320-MHz 256-QAM signal, the measured ACLR and EVM performances are better than -43 dBc and -32 dB at 2.4 GHz, respectively, without using any digital pre-distortion.</p

    Design of Current-Mode RF/mm-wave Front-Ends

    No full text
    This thesis investigates the performance limits and design challenges of two current-mode front-end concepts that target WiFi and mm-wave 5G applications, respectively. The first concept is a power amplifier (PA), which operates at 2.4GHz and is driven by a direct-digital RF modulator (DDRM). A design for the PA, which also includes a parallel-combining transformer (PCT), was proposed, taped and tested in the QUBiC Gen8 technology of NXP Semiconductors. The measured results yield a peak output power of 27dBm, power efficiency of 20%, and an adjacent channel power ratio (ACPR) of -33.05dBc. In the other concept, the DDRM drives a power mixer (PMIX) which up-converts the DDRM signal to mm-wave frequencies. For the PMIX-based front-end, multiple linearity enhancement techniques were proposed and evaluated using simulations. For both current-mode front-end concepts, an extensive analysis on the theoretical output power and power efficiency limit was performed. Although current-mode operation has a high linearity potential, fully reaching this potential turns out not to be trivial, due to various device non-idealities and imperfect impedance matching
    corecore