195,059 research outputs found

    Modeling radiation in particle clouds: On the importance of inter-particle radiation for pulverized solid fuel combustion

    Full text link
    The importance of inter-particle radiation for clusters of gray and diffuse particles is investigated. The radiative cooling of each individual particle is found to vary strongly with its position in the cluster, and a mean radiative particle cooling term is proposed for single particle simulations of particle clusters or for high detail simulation, like Direct Numerical Simulations of small sub-volumes of large clusters of particles. Radiative cooling is shown to be important both for furnaces for coal gasification and coal combustion. Broadening the particle size distribution is found to have just a minor effect on the radiative particle cooling. This is particularly the case for large and dense particle clusters where there is essentially no effect of size distribution broadening at all. For smaller and more dilute particle clusters, the effect of distribution broadening is clear but still not dominant

    Contrasting the direct radiative effect and direct radiative forcing of aerosols

    Get PDF
    The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm[superscript −2] and a DRE of −1.83 Wm[superscript −2] for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm[superscript −2] for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.United States. Environmental Protection Agency (EPA STAR Program)Massachusetts Institute of Technology (Charles E. Reed Faculty Initiative Fund)United States. Environmental Protection Agency (grant/cooperative agreement (RD-83503301)

    Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements

    No full text
    International audienceThe impact of Asian dust on cloud radiative forcing during 2003?2006 is studied by using the Clouds and Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are ?138.9, 69.1, and ?69.7 Wm?2, which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm?2, which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm?2, which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust

    Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    Get PDF
    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust

    J/psi Production: Tevatron and Fixed-Target Collisions

    Full text link
    In this talk I show the results of a fit of the NRQCD matrix elements to the CDF data for direct J/ψJ/\psi production, by including the radiative corrections to the colour-singlet channel and the effect of the kTk_T-smearing. Furthermore I perform the NLO NRQCD analysis of J/ψJ/\psi production in fixed-target proton-nucleon collisions and I fit the colour-octet matrix elements to the available experimental data. The results are compared to the Tevatron ones.Comment: 6 pages, 3 figures. Talk given at the QCD99 Euroconference, Montpellier, France, July 199

    Empirical determination of the effects of clouds on the Earth's Radiation Budget over the Pacific Ocean

    Get PDF
    The main objectives of this research has been to learn how clouds interact with the Earth's Radiation Budget (ERB). This broad goal has been approached in three distinct ways. The first has been to analyze the direct effect cloud amount has on the radiative components of the ERB. The second has been to investigate the indirect effects clouds and water vapor may have on the climate as a feedback mechanism. And finally an attempt has been made to simulate the findings in a simple radiative-convective climate model. This report will summarize these three phases of the research
    corecore