25,055 research outputs found

    Structure Learning of Partitioned Markov Networks

    Full text link
    We learn the structure of a Markov Network between two groups of random variables from joint observations. Since modelling and learning the full MN structure may be hard, learning the links between two groups directly may be a preferable option. We introduce a novel concept called the \emph{partitioned ratio} whose factorization directly associates with the Markovian properties of random variables across two groups. A simple one-shot convex optimization procedure is proposed for learning the \emph{sparse} factorizations of the partitioned ratio and it is theoretically guaranteed to recover the correct inter-group structure under mild conditions. The performance of the proposed method is experimentally compared with the state of the art MN structure learning methods using ROC curves. Real applications on analyzing bipartisanship in US congress and pairwise DNA/time-series alignments are also reported.Comment: Camera Ready for ICML 2016. Fixed some minor typo

    Scalable Rejection Sampling for Bayesian Hierarchical Models

    Full text link
    Bayesian hierarchical modeling is a popular approach to capturing unobserved heterogeneity across individual units. However, standard estimation methods such as Markov chain Monte Carlo (MCMC) can be impracticable for modeling outcomes from a large number of units. We develop a new method to sample from posterior distributions of Bayesian models, without using MCMC. Samples are independent, so they can be collected in parallel, and we do not need to be concerned with issues like chain convergence and autocorrelation. The algorithm is scalable under the weak assumption that individual units are conditionally independent, making it applicable for large datasets. It can also be used to compute marginal likelihoods

    Hybrid approximate message passing

    Full text link
    Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing interactions through aggregates of small, linearizable couplings of variables. AMP approximations based on the Central Limit Theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance--complexity trade-off can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.The work of S. Rangan was supported in part by the National Science Foundation under Grants 1116589, 1302336, and 1547332, and in part by the industrial affiliates of NYU WIRELESS. The work of A. K. Fletcher was supported in part by the National Science Foundation under Grants 1254204 and 1738286 and in part by the Office of Naval Research under Grant N00014-15-1-2677. The work of V. K. Goyal was supported in part by the National Science Foundation under Grant 1422034. The work of E. Byrne and P. Schniter was supported in part by the National Science Foundation under Grant CCF-1527162. (1116589 - National Science Foundation; 1302336 - National Science Foundation; 1547332 - National Science Foundation; 1254204 - National Science Foundation; 1738286 - National Science Foundation; 1422034 - National Science Foundation; CCF-1527162 - National Science Foundation; NYU WIRELESS; N00014-15-1-2677 - Office of Naval Research

    Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector

    Full text link
    For the important classical problem of inference on a sparse high-dimensional normal mean vector, we propose a novel empirical Bayes model that admits a posterior distribution with desirable properties under mild conditions. In particular, our empirical Bayes posterior distribution concentrates on balls, centered at the true mean vector, with squared radius proportional to the minimax rate, and its posterior mean is an asymptotically minimax estimator. We also show that, asymptotically, the support of our empirical Bayes posterior has roughly the same effective dimension as the true sparse mean vector. Simulation from our empirical Bayes posterior is straightforward, and our numerical results demonstrate the quality of our method compared to others having similar large-sample properties.Comment: 18 pages, 3 figures, 3 table

    Multiscale Dictionary Learning for Estimating Conditional Distributions

    Full text link
    Nonparametric estimation of the conditional distribution of a response given high-dimensional features is a challenging problem. It is important to allow not only the mean but also the variance and shape of the response density to change flexibly with features, which are massive-dimensional. We propose a multiscale dictionary learning model, which expresses the conditional response density as a convex combination of dictionary densities, with the densities used and their weights dependent on the path through a tree decomposition of the feature space. A fast graph partitioning algorithm is applied to obtain the tree decomposition, with Bayesian methods then used to adaptively prune and average over different sub-trees in a soft probabilistic manner. The algorithm scales efficiently to approximately one million features. State of the art predictive performance is demonstrated for toy examples and two neuroscience applications including up to a million features
    • …
    corecore