4,146 research outputs found

    Analog-to-digital conversion revolutionized by deep learning

    Full text link
    As the bridge between the analog world and digital computers, analog-to-digital converters are generally used in modern information systems such as radar, surveillance, and communications. For the configuration of analog-to-digital converters in future high-frequency broadband systems, we introduce a revolutionary architecture that adopts deep learning technology to overcome tradeoffs between bandwidth, sampling rate, and accuracy. A photonic front-end provides broadband capability for direct sampling and speed multiplication. Trained deep neural networks learn the patterns of system defects, maintaining high accuracy of quantized data in a succinct and adaptive manner. Based on numerical and experimental demonstrations, we show that the proposed architecture outperforms state-of-the-art analog-to-digital converters, confirming the potential of our approach in future analog-to-digital converter design and performance enhancement of future information systems

    Deep segmentation networks predict survival of non-small cell lung cancer

    Full text link
    Non-small-cell lung cancer (NSCLC) represents approximately 80-85% of lung cancer diagnoses and is the leading cause of cancer-related death worldwide. Recent studies indicate that image-based radiomics features from positron emission tomography-computed tomography (PET/CT) images have predictive power on NSCLC outcomes. To this end, easily calculated functional features such as the maximum and the mean of standard uptake value (SUV) and total lesion glycolysis (TLG) are most commonly used for NSCLC prognostication, but their prognostic value remains controversial. Meanwhile, convolutional neural networks (CNN) are rapidly emerging as a new premise for cancer image analysis, with significantly enhanced predictive power compared to other hand-crafted radiomics features. Here we show that CNN trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value. In a retrospective study on 96 NSCLC patients before stereotactic-body radiotherapy (SBRT), we found that the CNN segmentation algorithm (U-Net) trained for tumor segmentation in PET/CT images, contained features having strong correlation with 2- and 5-year overall and disease-specific survivals. The U-net algorithm has not seen any other clinical information (e.g. survival, age, smoking history) than the images and the corresponding tumor contours provided by physicians. Furthermore, through visualization of the U-Net, we also found convincing evidence that the regions of progression appear to match with the regions where the U-Net features identified patterns that predicted higher likelihood of death. We anticipate our findings will be a starting point for more sophisticated non-intrusive patient specific cancer prognosis determination

    Log-DenseNet: How to Sparsify a DenseNet

    Full text link
    Skip connections are increasingly utilized by deep neural networks to improve accuracy and cost-efficiency. In particular, the recent DenseNet is efficient in computation and parameters, and achieves state-of-the-art predictions by directly connecting each feature layer to all previous ones. However, DenseNet's extreme connectivity pattern may hinder its scalability to high depths, and in applications like fully convolutional networks, full DenseNet connections are prohibitively expensive. This work first experimentally shows that one key advantage of skip connections is to have short distances among feature layers during backpropagation. Specifically, using a fixed number of skip connections, the connection patterns with shorter backpropagation distance among layers have more accurate predictions. Following this insight, we propose a connection template, Log-DenseNet, which, in comparison to DenseNet, only slightly increases the backpropagation distances among layers from 1 to (1+log2L1 + \log_2 L), but uses only Llog2LL\log_2 L total connections instead of O(L2)O(L^2). Hence, Log-DenseNets are easier than DenseNets to implement and to scale. We demonstrate the effectiveness of our design principle by showing better performance than DenseNets on tabula rasa semantic segmentation, and competitive results on visual recognition

    Learning to Generate Images with Perceptual Similarity Metrics

    Full text link
    Deep networks are increasingly being applied to problems involving image synthesis, e.g., generating images from textual descriptions and reconstructing an input image from a compact representation. Supervised training of image-synthesis networks typically uses a pixel-wise loss (PL) to indicate the mismatch between a generated image and its corresponding target image. We propose instead to use a loss function that is better calibrated to human perceptual judgments of image quality: the multiscale structural-similarity score (MS-SSIM). Because MS-SSIM is differentiable, it is easily incorporated into gradient-descent learning. We compare the consequences of using MS-SSIM versus PL loss on training deterministic and stochastic autoencoders. For three different architectures, we collected human judgments of the quality of image reconstructions. Observers reliably prefer images synthesized by MS-SSIM-optimized models over those synthesized by PL-optimized models, for two distinct PL measures (1\ell_1 and 2\ell_2 distances). We also explore the effect of training objective on image encoding and analyze conditions under which perceptually-optimized representations yield better performance on image classification. Finally, we demonstrate the superiority of perceptually-optimized networks for super-resolution imaging. Just as computer vision has advanced through the use of convolutional architectures that mimic the structure of the mammalian visual system, we argue that significant additional advances can be made in modeling images through the use of training objectives that are well aligned to characteristics of human perception

    Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

    Full text link
    Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3×3×33\times3\times3 convolutions with 1×3×31\times3\times3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3×1×13\times1\times1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.Comment: ICCV 2017; The codes and model of our P3D ResNet are publicly available at: https://github.com/ZhaofanQiu/pseudo-3d-residual-network

    RoomNet: End-to-End Room Layout Estimation

    Full text link
    This paper focuses on the task of room layout estimation from a monocular RGB image. Prior works break the problem into two sub-tasks: semantic segmentation of floor, walls, ceiling to produce layout hypotheses, followed by an iterative optimization step to rank these hypotheses. In contrast, we adopt a more direct formulation of this problem as one of estimating an ordered set of room layout keypoints. The room layout and the corresponding segmentation is completely specified given the locations of these ordered keypoints. We predict the locations of the room layout keypoints using RoomNet, an end-to-end trainable encoder-decoder network. On the challenging benchmark datasets Hedau and LSUN, we achieve state-of-the-art performance along with 200x to 600x speedup compared to the most recent work. Additionally, we present optional extensions to the RoomNet architecture such as including recurrent computations and memory units to refine the keypoint locations under the same parametric capacity.Comment: accepted at ICCV 201

    SHADE: Information Based Regularization for Deep Learning

    Full text link
    Regularization is a big issue for training deep neural networks. In this paper, we propose a new information-theory-based regularization scheme named SHADE for SHAnnon DEcay. The originality of the approach is to define a prior based on conditional entropy, which explicitly decouples the learning of invariant representations in the regularizer and the learning of correlations between inputs and labels in the data fitting term. Our second contribution is to derive a stochastic version of the regularizer compatible with deep learning, resulting in a tractable training scheme. We empirically validate the efficiency of our approach to improve classification performances compared to common regularization schemes on several standard architectures

    Why are deep nets reversible: A simple theory, with implications for training

    Full text link
    Generative models for deep learning are promising both to improve understanding of the model, and yield training methods requiring fewer labeled samples. Recent works use generative model approaches to produce the deep net's input given the value of a hidden layer several levels above. However, there is no accompanying "proof of correctness" for the generative model, showing that the feedforward deep net is the correct inference method for recovering the hidden layer given the input. Furthermore, these models are complicated. The current paper takes a more theoretical tack. It presents a very simple generative model for RELU deep nets, with the following characteristics: (i) The generative model is just the reverse of the feedforward net: if the forward transformation at a layer is AA then the reverse transformation is ATA^T. (This can be seen as an explanation of the old weight tying idea for denoising autoencoders.) (ii) Its correctness can be proven under a clean theoretical assumption: the edge weights in real-life deep nets behave like random numbers. Under this assumption ---which is experimentally tested on real-life nets like AlexNet--- it is formally proved that feed forward net is a correct inference method for recovering the hidden layer. The generative model suggests a simple modification for training: use the generative model to produce synthetic data with labels and include it in the training set. Experiments are shown to support this theory of random-like deep nets; and that it helps the training

    Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection

    Full text link
    This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images. Benefiting from the compactness of range images, 2D convolutions can efficiently process dense LiDAR data of a scene. To overcome scale sensitivity in this perspective view, a novel range-conditioned dilation (RCD) layer is proposed to dynamically adjust a continuous dilation rate as a function of the measured range. Furthermore, localized soft range gating combined with a 3D box-refinement stage improves robustness in occluded areas, and produces overall more accurate bounding box predictions. On the public large-scale Waymo Open Dataset, our method sets a new baseline for range-based 3D detection, outperforming multiview and voxel-based methods over all ranges with unparalleled performance at long range detection.Comment: CoRL 202

    Learning Representations and Generative Models for 3D Point Clouds

    Full text link
    Three-dimensional geometric data offer an excellent domain for studying representation learning and generative modeling. In this paper, we look at geometric data represented as point clouds. We introduce a deep AutoEncoder (AE) network with state-of-the-art reconstruction quality and generalization ability. The learned representations outperform existing methods on 3D recognition tasks and enable shape editing via simple algebraic manipulations, such as semantic part editing, shape analogies and shape interpolation, as well as shape completion. We perform a thorough study of different generative models including GANs operating on the raw point clouds, significantly improved GANs trained in the fixed latent space of our AEs, and Gaussian Mixture Models (GMMs). To quantitatively evaluate generative models we introduce measures of sample fidelity and diversity based on matchings between sets of point clouds. Interestingly, our evaluation of generalization, fidelity and diversity reveals that GMMs trained in the latent space of our AEs yield the best results overall
    corecore