2,827,525 research outputs found

    Direct Feedback Alignment with Sparse Connections for Local Learning

    Get PDF
    Recent advances in deep neural networks (DNNs) owe their success to training algorithms that use backpropagation and gradient-descent. Backpropagation, while highly effective on von Neumann architectures, becomes inefficient when scaling to large networks. Commonly referred to as the weight transport problem, each neuron's dependence on the weights and errors located deeper in the network require exhaustive data movement which presents a key problem in enhancing the performance and energy-efficiency of machine-learning hardware. In this work, we propose a bio-plausible alternative to backpropagation drawing from advances in feedback alignment algorithms in which the error computation at a single synapse reduces to the product of three scalar values. Using a sparse feedback matrix, we show that a neuron needs only a fraction of the information previously used by the feedback alignment algorithms. Consequently, memory and compute can be partitioned and distributed whichever way produces the most efficient forward pass so long as a single error can be delivered to each neuron. Our results show orders of magnitude improvement in data movement and 2×2\times improvement in multiply-and-accumulate operations over backpropagation. Like previous work, we observe that any variant of feedback alignment suffers significant losses in classification accuracy on deep convolutional neural networks. By transferring trained convolutional layers and training the fully connected layers using direct feedback alignment, we demonstrate that direct feedback alignment can obtain results competitive with backpropagation. Furthermore, we observe that using an extremely sparse feedback matrix, rather than a dense one, results in a small accuracy drop while yielding hardware advantages. All the code and results are available under https://github.com/bcrafton/ssdfa.Comment: 15 pages, 8 figure

    Learning Depth from Monocular Videos using Direct Methods

    Full text link
    The ability to predict depth from a single image - using recent advances in CNNs - is of increasing interest to the vision community. Unsupervised strategies to learning are particularly appealing as they can utilize much larger and varied monocular video datasets during learning without the need for ground truth depth or stereo. In previous works, separate pose and depth CNN predictors had to be determined such that their joint outputs minimized the photometric error. Inspired by recent advances in direct visual odometry (DVO), we argue that the depth CNN predictor can be learned without a pose CNN predictor. Further, we demonstrate empirically that incorporation of a differentiable implementation of DVO, along with a novel depth normalization strategy - substantially improves performance over state of the art that use monocular videos for training

    DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving

    Full text link
    Today, there are two major paradigms for vision-based autonomous driving systems: mediated perception approaches that parse an entire scene to make a driving decision, and behavior reflex approaches that directly map an input image to a driving action by a regressor. In this paper, we propose a third paradigm: a direct perception approach to estimate the affordance for driving. We propose to map an input image to a small number of key perception indicators that directly relate to the affordance of a road/traffic state for driving. Our representation provides a set of compact yet complete descriptions of the scene to enable a simple controller to drive autonomously. Falling in between the two extremes of mediated perception and behavior reflex, we argue that our direct perception representation provides the right level of abstraction. To demonstrate this, we train a deep Convolutional Neural Network using recording from 12 hours of human driving in a video game and show that our model can work well to drive a car in a very diverse set of virtual environments. We also train a model for car distance estimation on the KITTI dataset. Results show that our direct perception approach can generalize well to real driving images. Source code and data are available on our project website

    Assessment for learning in architectural design programmes

    Get PDF
    This paper compares the learning and teaching strategies practised in the programmes of the Architectural Subject Group at the University of Northumbria with best practices of assessment (‘Assessment for Learning’) as promoted by the Centre for Excellence in Learning in the same University. These best practices are grouped under the umbrella concepts of ‘Assessment for Learning’ and comprise six key criteria which can be paraphrased as; authenticity and complexity in methods of assessment; use of summative assessment as the main driver for learning; extensive opportunities to develop and demonstrate learning; rich in formal feedback; rich in informal feedback; developing students’ abilities to direct their own learning, evaluate their own progress, and support the learning of others

    An Enactive-Ecological Approach to Information and Uncertainty

    Get PDF
    Information is a central notion for cognitive sciences and neurosciences, but there is no agreement on what it means for a cognitive system to acquire information about its surroundings. In this paper, we approximate three influential views on information: the one at play in ecological psychology, which is sometimes called information for action; the notion of information as covariance as developed by some enactivists, and the idea of information as minimization of uncertainty as presented by Shannon. Our main thesis is that information for action can be construed as covariant information, and that learning to perceive covariant information is a matter of minimizing uncertainty through skilled performance. We argue that the agent’s cognitive system conveys information for acting in an environment by minimizing uncertainty about how to achieve her intended goals in that environment. We conclude by reviewing empirical findings that support our view and by showing how direct learning, seen as instance of ecological rationality at work, is how mere possibilities for action are turned into embodied know-how. Finally, we indicate the affinity between direct learning and sense-making activity
    corecore