1,874 research outputs found

    A Reinforcement Learning Agent for Minutiae Extraction from Fingerprints

    Get PDF
    In this paper we show that reinforcement learning can be used for minutiae detection in fingerprint matching. Minutiae are characteristic features of fingerprints that determine their uniqueness. Classical approaches use a series of image processing steps for this task, but lack robustness because they are highly sensitive to noise and image quality. We propose a more robust approach, in which an autonomous agent walks around in the fingerprint and learns how to follow ridges in the fingerprint and how to recognize minutiae. The agent is situated in the environment, the fingerprint, and uses reinforcement learning to obtain an optimal policy. Multi-layer perceptrons are used for overcoming the difficulties of the large state space. By choosing the right reward structure and learning environment, the agent is able to learn the task. One of the main difficulties is that the goal states are not easily specified, for they are part of the learning task as well. That is, the recognition of minutiae has to be learned in addition to learning how to walk over the ridges in the fingerprint. Results of successful first experiments are presented

    A Correlation-Based Fingerprint Verification System

    Get PDF
    In this paper, a correlation-based fingerprint verification system is presented. Unlike the traditional minutiae-based systems, this system directly uses the richer gray-scale information of the fingerprints. The correlation-based fingerprint verification system first selects appropriate templates in the primary fingerprint, uses template matching to locate them in the secondary print, and compares the template positions of both fingerprints. Unlike minutiae-based systems, the correlation-based fingerprint verification system is capable of dealing with bad-quality images from which no minutiae can be extracted reliably and with fingerprints that suffer from non-uniform shape distortions. Experiments have shown that the performance of this system at the moment is comparable to the performance of many other fingerprint verification systems

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points

    Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge

    Full text link
    We propose a fully automatic minutiae extractor, called MinutiaeNet, based on deep neural networks with compact feature representation for fast comparison of minutiae sets. Specifically, first a network, called CoarseNet, estimates the minutiae score map and minutiae orientation based on convolutional neural network and fingerprint domain knowledge (enhanced image, orientation field, and segmentation map). Subsequently, another network, called FineNet, refines the candidate minutiae locations based on score map. We demonstrate the effectiveness of using the fingerprint domain knowledge together with the deep networks. Experimental results on both latent (NIST SD27) and plain (FVC 2004) public domain fingerprint datasets provide comprehensive empirical support for the merits of our method. Further, our method finds minutiae sets that are better in terms of precision and recall in comparison with state-of-the-art on these two datasets. Given the lack of annotated fingerprint datasets with minutiae ground truth, the proposed approach to robust minutiae detection will be useful to train network-based fingerprint matching algorithms as well as for evaluating fingerprint individuality at scale. MinutiaeNet is implemented in Tensorflow: https://github.com/luannd/MinutiaeNetComment: Accepted to International Conference on Biometrics (ICB 2018

    Systematic methods for the computation of the directional fields and singular points of fingerprints

    Get PDF
    The first subject of the paper is the estimation of a high resolution directional field of fingerprints. Traditional methods are discussed and a method, based on principal component analysis, is proposed. The method not only computes the direction in any pixel location, but its coherence as well. It is proven that this method provides exactly the same results as the "averaged square-gradient method" that is known from literature. Undoubtedly, the existence of a completely different equivalent solution increases the insight into the problem's nature. The second subject of the paper is singular point detection. A very efficient algorithm is proposed that extracts singular points from the high-resolution directional field. The algorithm is based on the Poincare index and provides a consistent binary decision that is not based on postprocessing steps like applying a threshold on a continuous resemblance measure for singular points. Furthermore, a method is presented to estimate the orientation of the extracted singular points. The accuracy of the methods is illustrated by experiments on a live-scanned fingerprint databas
    • 

    corecore