7 research outputs found

    Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography

    Get PDF
    Imaging methods applied to living organisms with emphasis on innovative approaches that use emerging technologies supported by rigorous physical and mathematical analysis and quantitative evaluation of performance. Membership in IEEE's technical societies provides access to top quality publications such as this one either as a member benefit or via discounted subscriptions. The lowest subscription prices for this title is available for members of the IEEE Engineering in Medicine and Biology Society, IEEE Signal Processing, IEEE Nuclear and Plasma Sciences Society, or the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society

    On Iterative Algorithms for Quantitative Photoacoustic Tomography in the Radiative Transport Regime

    Full text link
    In this paper, we describe the numerical reconstruction method for quantitative photoacoustic tomography (QPAT) based on the radiative transfer equation (RTE), which models light propagation more accurately than diffusion approximation (DA). We investigate the reconstruction of absorption coefficient and/or scattering coefficient of biological tissues. Given the scattering coefficient, an improved fixed-point iterative method is proposed to retrieve the absorption coefficient for its cheap computational cost. And we prove the convergence. To retrieve two coefficients simultaneously, Barzilai-Borwein (BB) method is applied. Since the reconstruction of optical coefficients involves the solution of original and adjoint RTEs in the framework of optimization, an efficient solver with high accuracy is improved from~\cite{Gao}. Simulation experiments illustrate that the improved fixed-point iterative method and the BB method are the comparative methods for QPAT in two cases.Comment: 21 pages, 44 figure

    Three dimensional photoacoustic tomography in Bayesian framework

    Get PDF
    The image reconstruction problem (or inverse problem) in photoacoustic tomography is to resolve the initial pressure distribution from detected ultrasound waves generated within an object due to an illumination by a short light pulse. Recently, a Bayesian approach to photoacoustic image reconstruction with uncertainty quantification was proposed and studied with two dimensional numerical simulations. In this paper, the approach is extended to three spatial dimensions and, in addition to numerical simulations, experimental data are considered. The solution of the inverse problem is obtained by computing point estimates, i.e., maximum a posteriori estimate and posterior covariance. These are computed iteratively in a matrix-free form using a biconjugate gradient stabilized method utilizing the adjoint of the acoustic forward operator. The results show that the Bayesian approach can produce accurate estimates of the initial pressure distribution in realistic measurement geometries and that the reliability of these estimates can be assessed

    Image Reconstruction with Reliability Assessment in Quantitative Photoacoustic Tomography

    Get PDF
    Quantitative photoacoustic tomography is a novel imaging method which aims to reconstruct optical parameters of an imaged target based on initial pressure distribution, which can be obtained from ultrasound measurements. In this paper, a method for reconstructing the optical parameters in a Bayesian framework is presented. In addition, evaluating the credibility of the estimates is studied. Furthermore, a Bayesian approximation error method is utilized to compensate the modeling errors caused by coarse discretization of the forward model. The reconstruction method and the reliability of the credibility estimates are investigated with two-dimensional numerical simulations. The results suggest that the Bayesian approach can be used to obtain accurate estimates of the optical parameters and the credibility estimates of these parameters. Furthermore, the Bayesian approximation error method can be used to compensate for the modeling errors caused by a coarse discretization, which can be used to reduce the computational costs of the reconstruction procedure. In addition, taking the modeling errors into account can increase the reliability of the credibility estimates
    corecore