2 research outputs found

    Direct Estimation of Differential Functional Graphical Models

    Full text link
    We consider the problem of estimating the difference between two functional undirected graphical models with shared structures. In many applications, data are naturally regarded as high-dimensional random function vectors rather than multivariate scalars. For example, electroencephalography (EEG) data are more appropriately treated as functions of time. In these problems, not only can the number of functions measured per sample be large, but each function is itself an infinite dimensional object, making estimation of model parameters challenging. We develop a method that directly estimates the difference of graphs, avoiding separate estimation of each graph, and show it is consistent in certain high-dimensional settings. We illustrate finite sample properties of our method through simulation studies. Finally, we apply our method to EEG data to uncover differences in functional brain connectivity between alcoholics and control subjects.Comment: 21 pages, 3 figures, to be published in NeurIPS 2019; added link to cod

    Constrained High Dimensional Statistical Inference

    Full text link
    In typical high dimensional statistical inference problems, confidence intervals and hypothesis tests are performed for a low dimensional subset of model parameters under the assumption that the parameters of interest are unconstrained. However, in many problems, there are natural constraints on model parameters and one is interested in whether the parameters are on the boundary of the constraint or not. e.g. non-negativity constraints for transmission rates in network diffusion. In this paper, we provide algorithms to solve this problem of hypothesis testing in high-dimensional statistical models under constrained parameter space. We show that following our testing procedure we are able to get asymptotic designed Type I error under the null. Numerical experiments demonstrate that our algorithm has greater power than the standard algorithms where the constraints are ignored. We demonstrate the effectiveness of our algorithms on two real datasets where we have {\emph{intrinsic}} constraint on the parameters
    corecore