50,790 research outputs found

    Dimensional operators for mathematical morphology on simplicial complexes

    Get PDF
    International audienceIn this work we study the framework of mathematical morphology on simplicial complex spaces. Simplicial complexes are widely used to represent multidimensional data, such as meshes, that are two dimensional complexes, or graphs, that can be interpreted as one dimensional complexes. Mathematical morphology is one of the most powerful frameworks for image processing, including the processing of digital structures, and is heavily used for many applications. However, mathematical morphology operators on simplicial complex spaces is not a concept fully developed in the literature. Specifically, we explore properties of the dimensional operators, small, versatile operators that can be used to define new operators on simplicial complexes, while maintaining properties from mathematical morphology. These operators can also be used to recover many morphological operators from the literature. Matlab code and additional material, including the proofs of the original properties, are freely available at~\url{https://code.google.com/p/math-morpho-simplicial-complexes.

    Topological graph dimension

    Get PDF
    AbstractIn the invited chapter Discrete Spatial Models of the book Handbook of Spatial Logics, we have introduced the concept of dimension for graphs, which is inspired by Evako’s idea of dimension of graphs [A.V. Evako, R. Kopperman, Y.V. Mukhin, Dimensional properties of graphs and digital spaces, J. Math. Imaging Vision 6 (1996) 109–119]. Our definition is analogous to that of (small inductive) dimension in topology. Besides the expected properties of isomorphism-invariance and monotonicity with respect to subgraph inclusion, it has the following distinctive features: •Local aspect. That is, dimension at a vertex is basic, and the dimension of a graph is obtained as the sup over its vertices.•Dimension of a strong product G×H is dim(G)+dim(H) (for non-empty graphs G,H). In this paper we present a short account of the basic theory, with several new applications and results

    Dimension on Discrete Spaces

    Full text link
    In this paper we develop some combinatorial models for continuous spaces. In this spirit we study the approximations of continuous spaces by graphs, molecular spaces and coordinate matrices. We define the dimension on a discrete space by means of axioms, and the axioms are based on an obvious geometrical background. This work presents some discrete models of n-dimensional Euclidean spaces, n-dimensional spheres, a torus and a projective plane. It explains how to construct new discrete spaces and describes in this connection several three-dimensional closed surfaces with some topological singularities It also analyzes the topology of (3+1)-spacetime. We are also discussing the question by R. Sorkin [19] about how to derive the system of simplicial complexes from a system of open covering of a topological space S.Comment: 16 pages, 8 figures, Latex. Figures are not included, available from the author upon request. Preprint SU-GP-93/1-1. To appear in "International Journal of Theoretical Physics
    • …
    corecore