393 research outputs found

    Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease

    Full text link
    We propose an automatic method using dilated convolutional neural networks (CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR (CMR) of patients with congenital heart disease (CHD). Ten training and ten test CMR scans cropped to an ROI around the heart were provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive field of 131x131 voxels was trained for myocardium and blood pool segmentation in axial, sagittal and coronal image slices. Performance was evaluated within the HVSMR challenge. Automatic segmentation of the test scans resulted in Dice indices of 0.80±\pm0.06 and 0.93±\pm0.02, average distances to boundaries of 0.96±\pm0.31 and 0.89±\pm0.24 mm, and Hausdorff distances of 6.13±\pm3.76 and 7.07±\pm3.01 mm for the myocardium and blood pool, respectively. Segmentation took 41.5±\pm14.7 s per scan. In conclusion, dilated CNNs trained on a small set of CMR images of CHD patients showing large anatomical variability provide accurate myocardium and blood pool segmentations

    Adversarial training and dilated convolutions for brain MRI segmentation

    Full text link
    Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to distinguish from real images. In this study we use an adversarial training approach to improve CNN-based brain MRI segmentation. To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations. During training, this loss function is optimised together with the conventional average per-voxel cross entropy loss. The results show improved segmentation performance using this adversarial training procedure for segmentation of two different sets of images and using two different network architectures, both visually and in terms of Dice coefficients.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi

    Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

    Get PDF
    Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors. Deep convolutional neural networks (CNNs) have been widely used for this task. Due to the relatively small data set for training, data augmentation at training time has been commonly used for better performance of CNNs. Recent works also demonstrated the usefulness of using augmentation at test time, in addition to training time, for achieving more robust predictions. We investigate how test-time augmentation can improve CNNs' performance for brain tumor segmentation. We used different underpinning network structures and augmented the image by 3D rotation, flipping, scaling and adding random noise at both training and test time. Experiments with BraTS 2018 training and validation set show that test-time augmentation helps to improve the brain tumor segmentation accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201

    Scalable multimodal convolutional networks for brain tumour segmentation

    Get PDF
    Brain tumour segmentation plays a key role in computer-assisted surgery. Deep neural networks have increased the accuracy of automatic segmentation significantly, however these models tend to generalise poorly to different imaging modalities than those for which they have been designed, thereby limiting their applications. For example, a network architecture initially designed for brain parcellation of monomodal T1 MRI can not be easily translated into an efficient tumour segmentation network that jointly utilises T1, T1c, Flair and T2 MRI. To tackle this, we propose a novel scalable multimodal deep learning architecture using new nested structures that explicitly leverage deep features within or across modalities. This aims at making the early layers of the architecture structured and sparse so that the final architecture becomes scalable to the number of modalities. We evaluate the scalable architecture for brain tumour segmentation and give evidence of its regularisation effect compared to the conventional concatenation approach.Comment: Paper accepted at MICCAI 201
    • …
    corecore