9,347 research outputs found

    Vector Quantization Video Encoder Using Hierarchical Cache Memory Scheme

    Get PDF
    A system compresses image blocks via successive hierarchical stages and motion encoders which employ caches updated by stack replacement algorithms. Initially, a background detector compares the present image block with a corresponding previously encoded image block and if similar, the background detector terminates the encoding procedure by setting a flag bit. Otherwise, the image block is decomposed into smaller present image subblocks. The smaller present image subblocks are each compared with a corresponding previously encoded image subblock of comparable size within the present image block. When a present image subblock is similar to a corresponding previously encoded image subblock, then the procedure is terminated by setting a flag bit. Alternatively, the present image subblock is forwarded to a motion encoder where it is compared with displaced image subblocks, which are formed by displacing previously encoded image subblocks by motion vectors that are stored in a cache, to derive a first distortion vector. When the first distortion vector is below a first threshold TM, the procedure is terminated and the present image subblock is encoded by setting flag bit and a cache index corresponding to the first distortion vector. Alternatively, the present image subblock is passed to a block matching encoder where it is compared with other previously encoded image subblocks to derive a second distortion vector. When the second distortion vector is below a second threshold Tm, the procedure is terminated by setting a flag bit, by generating the second distortion vector, and by updating the cache.Georgia Tech Research Corporatio

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    Scalable Compression of Deep Neural Networks

    Full text link
    Deep neural networks generally involve some layers with mil- lions of parameters, making them difficult to be deployed and updated on devices with limited resources such as mobile phones and other smart embedded systems. In this paper, we propose a scalable representation of the network parameters, so that different applications can select the most suitable bit rate of the network based on their own storage constraints. Moreover, when a device needs to upgrade to a high-rate network, the existing low-rate network can be reused, and only some incremental data are needed to be downloaded. We first hierarchically quantize the weights of a pre-trained deep neural network to enforce weight sharing. Next, we adaptively select the bits assigned to each layer given the total bit budget. After that, we retrain the network to fine-tune the quantized centroids. Experimental results show that our method can achieve scalable compression with graceful degradation in the performance.Comment: 5 pages, 4 figures, ACM Multimedia 201

    Multiresolution source coding using entropy constrained dithered scalar quantization

    Get PDF
    In this paper, we build multiresolution source codes using entropy constrained dithered scalar quantizers. We demonstrate that for n-dimensional random vectors, dithering followed by uniform scalar quantization and then by entropy coding achieves performance close to the n-dimensional optimum for a multiresolution source code. Based on this result, we propose a practical code design algorithm and compare its performance with that of the set partitioning in hierarchical trees (SPIHT) algorithm on natural images
    • …
    corecore