2,944 research outputs found

    OPTIMIZATION OF PID CONTROLLER PARAMETERS USING ARTIFICIAL FISH SWARM ALGORITHM

    Get PDF
    This Final Year Project is preceded on the topic named “The Optimization of PID Control Parameters Using Artificial Fish Swarm Algorithm”. The background of the topic is presented in the Introduction chapter that describes on PID controllers. The Literature Review chapter thoroughly describes the Idea of Swarm Intelligence and Swarm Optimization. In methodology, the mathematical model of the algorithm is briefly described. For the Analysis and Discussion the PID Pressure Control Plant is used. Its simulation in MATLAB Simulink along with its block diagram is presented in the Results and discussions sections. The results found in the study shows that the optimization is valid and effective

    Identification and energy optimization of supercritical carbon dioxide batch extraction

    Get PDF
    Abstract. The emergence of green chemistry, aiming to increase ecological and energy efficiency of processes, has gained supercritical fluid extraction increasing amounts of prominence. Traditional extraction methods utilize hazardous chemicals, have low extractive yield in relation to energy consumption, and produce large amounts of organic waste. Supercritical fluid extraction offers improvements to these challenges in the form of reduced processing energy inputs and an alternative solvent approach. Carbon dioxide is the most commonly employed solvent in supercritical fluid extraction due to the many advantages it brings over other solvents including price, smaller environmental and health risks, and simple separation. The research on data-driven system identification and advanced process control of supercritical extraction has been very scarce. According to past research, the control of supercritical is mostly carried out using basic, non-model-based control schemes. Challenges such as coupling between control loops and nonlinearities of fluid and process dynamics create major challenges for the basic control schemes. With advanced control methods, it could be possible to address these challenges better. Model-based control schemes, in theory, pose many advantages and benefits over basic control, such as improved production economics, optimized product quality and yields, and further possibilities in model-driven research and development. The goal of this thesis was to improve control performance and optimize energy consumption a pilot-scale batch supercritical carbon dioxide extraction process by utilizing model predictive control strategies. The modeling of the unit processes of the target batch extraction was based on measurement data gathered by experimental design and careful examination of the system. The models were utilized in a simulator developed in this study. The arrangement of the implemented experimental design (central composite design, CCD) allowed the exploitation of linear regression analysis; the results of which indicated the existence of possible nonlinearities between steady-state electricity consumption and the operative variables of the process. Model predictive control schemes were developed in a simulator environment for carbon dioxide pressure control, carbon dioxide volumetric flow control, extractor temperature control and separator temperature control. The developed control schemes showed major improvements in control performance of the simulated unit processes, resulting in significant decreases in total electricity and heating water consumptions (up to 25% and 21% respectively). Model predictive control also proved to be quite flexible over the base control system for some processes, providing the possibility of modifying control performance by simple tuning adjustments. The simulated control strategies demonstrate the benefits of model-based control in terms of process energy efficiency and economy. In addition to these results, the identified process and controller models have further potential in future research on control and process developments of supercritical fluid extraction.Ylikriittisen hiilidioksidipanosuuton identifiointi ja energiaoptimointi. Tiivistelmä. Prosessien ekologisuuden ja energiatehokkuuden lisäämiseen tähtäävä vihreä kemia edistää ylikriittisen uuton merkittävyyttä yhä enemmän. Perinteiset erotusmenetelmät käyttävät haitallisia kemikaaleja, niillä on alhainen uuteainesaanto suhteessa energian kulutukseen, ja ne tuottavat suuren määrän orgaanista jätettä. Ylikriittinen uutto tarjoaa parannuksia näihin haasteisiin prosessointienergian kulutuksen vähentymisen ja vaihtoehtoisen liuotinratkaisun muodossa. Hiilidioksidi on yleisimmin käytetty liuotin ylikriittisessä uutossa, koska sillä on monia etuja muihin liuottimiin verrattuna, mukaan lukien hinta, pienemmät ympäristö- ja terveysriskit sekä yksinkertainen erottaminen. Ylikriittiseen uuttoprosessiin liittyvän datapohjaisen identifioinnin ja kehittyneen säädön tutkimus on ollut hyvin vähäistä. Aiempien tutkimusten perusteella ylikriittisen uuton säätö toteutetaan pääasiassa perustason ei-mallipohjaisilla säätörakenteilla. Ohjaussilmukoiden vuorovaikutukset sekä neste- ja prosessidynamiikan epälineaarisuudet luovat suuria haasteita perussäätörakenteille. Kehittyneillä säätömenetelmillä olisi mahdollista käsitellä näitä haasteita paremmin. Mallipohjaiset säätöratkaisut tuovat teoriassa useita etuja ja hyötyjä perussäätöön verrattuna parantuvan tuotantoekonomian, optimoidun tuotelaadun ja -saannon sekä malliperusteisen tutkimuksen ja -kehityksen lisämahdollisuuksien muodossa. Tämän työn tavoitteena oli nostaa pilottikoon ylikriittisen hiilidioksidipanosuuttoprosessin säädön suorituskykyä ja optimoida energiankulutusta hyödyntämällä mallipredikriivisiä säätöstrategioita. Tutkimuksen kohteena olleen panosuuton yksikköprosessien mallinnus perustui koesuunnittelulla kerättyyn mittausaineistoon ja järjestelmän huolelliseen tarkkailuun. Malleja hyödynnettiin työssä kehitetyssä prosessisimulaattorissa. Toteutettu koessunnitelma (central composite design, CCD) mahdollisti lineaarisen regressioanalyysin hyödyntämisen, jonka tulokset osoittivat mahdollisten epälineaarisuuksien olemassaolon prosessin vakaan tilan sähkönkulutuksen ja operatiivisten muuttujien välillä. Malliprediktiiviset säätörakenteet kehitettiin simulaatioympäristössä hiilidioksidin paineen, hiilidioksidin tilavuusvirtauksen, uuttoreaktorin lämpötilan, ja erottajan lämpötilan säädöille. Kehitetyt säätörakenteet toivat suuria säätöparannuksia simuloituihin yksikköprosesseihin, johtaen merkittäviin vähennyksiin käyttösähkön- ja lämmitysveden kulutuksissa (vastaavat vähennykset 25 % ja 21 % saakka). Malliprediktiivinen säätö osoitti myös joustavuutensa perusäätöjärjestelmään verrattuna joissakin prosesseissa, mahdollistaen säätösuorituskyvyn modifioinnin yksinkertaisilla viritysmuutoksilla. Simuloidut säätöstrategiat havainnollistavat mallipohjaisen säädön mahdollisia hyötyjä prosessin energiatehokkuuden ja taloudellisuuden kannalta. Näiden tulosten lisäksi identifioiduilla prosessi- ja säädinmalleilla on lisäpotentiaalia tulevaisuuden ylikriittisen uuton säädön tutkimuksissa ja prosessikehityksissä

    Air-conditioning system design for optimum control performance in Hong Kong

    Get PDF
    Studies on design for control optimization of air-conditioning (a/c) system for better performance in Hong Kong are reported in this thesis. Typical plant configuration data was collected from an in-depth survey of a/c systems and control used in Hong Kong. Control performance has been used for the first time as an objective for optimizing a/c system designs. The study investigates and illustrates that optimization of a/c systems for application in the Hong Kong by simulation is promising and flexible. The accuracy of simulation is enhanced by using the survey data. The survey shows that some a/c control systems and their control strategies are not well considered in the design stage and their operation and set-up are not properly addressed. Hence, there exists optimization opportunities in the a/c system design and control strategies for a/c systems used in Hong Kong. Parameters affecting the control performance of a/c systems were investigated by carrying out experiments. Identified parameters are the objective function of optimization, controller settings, control valve and drive and, in case of direct digital control, sampling rate. The influence of these factors on the control performance is an essential consideration for the entire optimization process. Strategies in applying the findings in optimizing an a/c system for control performance by simulation were developed and suggested. This study provides platform for further simulation study of optimization in both methodologies and control strategies for a/c system design and operation

    Proportional-integral-plus (PIP) control of the ALSTOM gasifier problem

    Get PDF
    Although it is able to exploit the full power of optimal state variable feedback within a non-minimum state-space (NMSS) setting, the proportional-integral-plus (PIP) controller is simple to implement and provides a logical extension of conventional proportional-integral and proportional-integral-derivative (PI/PID) controllers, with additional dynamic feedback and input compensators introduced automatically by the NMSS formulation of the problem when the process is of greater than first order or has appreciable pure time delays. The present paper applies the PIP methodology to the ALSTOM benchmark challenge, which takes the form of a highly coupled multi-variable linear model, representing the gasifier system of an integrated gasification combined cycle (IGCC) power plant. In particular, a straightforwardly tuned discrete-time PIP control system based on a reduced-order backward-shift model of the gasifier is found to yield good control of the benchmark, meeting most of the specified performance requirements at three different operating points

    On-line method for optimal tuning of PID controllers using standard OPC interface

    Get PDF
    Introduction− The controlled PID is the most widely used mathematical algorithm as a regulatory control strategy in industrial environments. The applications are varied; however, its answer depends on the proper calculation of its three parameters: the proportional, the derivative, and the integral. Analytical tuning and experimental methods solve the problem, but new tuning possibilities are now enabled within the digital and process integration context. Objective− Automatically and remotely obtain the optimal parameters of the PID controller, taking advantage of an online connection via the OPC communication protocol to analyze the transient response of the system. Methodology− The study is carried out in three main phases; it begins with a PD3 SMAR thermal process with connection via OPC; in this phase, the mathematical model of the process is built analytically based on fundamental laws. In the second phase, using an analytical tuning method, the PID control architecture is created on which the online experimentation is carried out. In the third phase, the genetic algorithms for automatic tuning are implemented, extracting performance measures from the PID controller through the transient response of the process and optimally determining the values for the proportional, derivative, and integral parameters. Results− The automatic tuning method was tested with two properly instrumented industrial processes. The potential for application can be seen due to its good result and because it does not require specific mathematical knowledge compared to conventional tuning methods. Conclusions− The automatic tuning method can be used remotely to calculate the optimal parameters of a PID controller. The parameters are calculated from the transient response and the definition of design criteria adaptable to any need for control, response, and process

    Proportional-integral-plus (PIP) control of the ALSTOM gasifier problem

    Get PDF
    Although it is able to exploit the full power of optimal state variable feedback within a non-minimum state-space (NMSS) setting, the proportional-integral-plus (PIP) controller is simple to implement and provides a logical extension of conventional proportional-integral and proportional-integral-derivative (PI/PID) controllers, with additional dynamic feedback and input compensators introduced automatically by the NMSS formulation of the problem when the process is of greater than first order or has appreciable pure time delays. The present paper applies the PIP methodology to the ALSTOM benchmark challenge, which takes the form of a highly coupled multi-variable linear model, representing the gasifier system of an integrated gasification combined cycle (IGCC) power plant. In particular, a straightforwardly tuned discrete-time PIP control system based on a reduced-order backward-shift model of the gasifier is found to yield good control of the benchmark, meeting most of the specified performance requirements at three different operating points

    SYSTEM IDENTIFICATION AND MODEL PREDICTIVE CONTROL FOR INTERACTING SERIES PROCESS WITH NONLINEAR DYNAMICS

    Get PDF
    This thesis discusses the empirical modeling using system identification technique and the implementation of a linear model predictive control with focus on interacting series processes. In general, a structure involving a series of systems occurs often in process plants that include processing sequences such as feed heat exchanger, chemical reactor, product cooling, and product separation. The study is carried out by experimental works using the gaseous pilot plant as the process. The gaseous pilot plant exhibits the typical dynamic of an interacting series process, where the strong interaction between upstream and downstream properties occurs in both ways. The subspace system identification method is used to estimate the linear model parameters. The developed model is designed to be robust against plant nonlinearities. The plant dynamics is first derived from mass and momentum balances of an ideal gas. To provide good estimations, two kinds of input signals are considered, and three methods are taken into account to determine the model order. Two model structures are examined. The model validation is conducted in open-loop and in closed-loop control system. Real-time implementation of a linear model predictive control is also studied. Rapid prototyping of such controller is developed using the available equipments and software tools. The study includes the tuning of the controller in a heuristic way and the strategy to combine two kinds of control algorithm in the control system. A simple set of guidelines for tuning the model predictive controller is proposed. Several important issues in the identification process and real-time implementation of model predictive control algorithm are also discussed. The proposed method has been successfully demonstrated on a pilot plant and a number of key results obtained in the development process are presented

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications
    corecore