205 research outputs found

    Diffusion in higher dimensional SYK model with complex fermions

    Full text link
    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential \mu. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.Comment: 15 pages, 1 figure, add 4 references and fix some typos in this versio

    Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models

    Full text link
    The Sachdev-Ye-Kitaev model is a (0+1)(0+1)-dimensional model describing Majorana fermions or complex fermions with random interactions. This model has various interesting properties such as approximate local criticality (power law correlation in time), zero temperature entropy, and quantum chaos. In this article, we propose a higher dimensional generalization of the Sachdev-Ye-Kitaev model, which is a lattice model with NN Majorana fermions at each site and random interactions between them. Our model can be defined on arbitrary lattices in arbitrary spatial dimensions. In the large NN limit, the higher dimensional model preserves many properties of the Sachdev-Ye-Kitaev model such as local criticality in two-point functions, zero temperature entropy and chaos measured by the out-of-time-ordered correlation functions. In addition, we obtain new properties unique to higher dimensions such as diffusive energy transport and a "butterfly velocity" describing the propagation of chaos in space. We mainly present results for a (1+1)(1+1)-dimensional example, and discuss the general case near the end.Comment: 1+37 pages, published versio

    Thickening and sickening the SYK model

    Get PDF
    We discuss higher dimensional generalizations of the 0+1-dimensional Sachdev-Ye-Kitaev (SYK) model that has recently become the focus of intensive interdisciplinary studies by, both, the condensed matter and field-theoretical communities. Unlike the previous constructions where multiple SYK copies would be coupled to each other and/or hybridized with itinerant fermions via spatially short-ranged random hopping processes, we study algebraically varying long-range (spatially and/or temporally) correlated random couplings in the general d+1 dimensions. Such pertinent topics as translationally-invariant strong-coupling solutions, emergent reparametrization symmetry, effective action for fluctuations, chaotic behavior, and diffusive transport (or a lack thereof) are all addressed. We find that the most appealing properties of the original SYK model that suggest the existence of its 1+1-dimensional holographic gravity dual do not survive the aforementioned generalizations, thus lending no additional support to the hypothetical broad (including 'non-AdS/non-CFT') holographic correspondence.Comment: Updated and extended version. Latex, no figure

    Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation

    Full text link
    We show that there exists a class of charged BTZ-like black hole solutions in Lifshitz spacetime with a hyperscaling violating factor. The charged BTZ is characterized by a charge-dependent logarithmic term in the metric function. As concrete examples, we give five such charged BTZ-like black hole solutions and the standard charged BTZ metric can be regarded as a special instance of them. In order to check the recent proposed universal relations between diffusivity and the butterfly velocity, we first compute the diffusion constants of the standard charged BTZ black holes and then extend our calculation to arbitrary dimension dd, exponents zz and θ\theta. Remarkably, the case d=θd=\theta and z=2z=2 is a very special in that the charge diffusion DcD_c is a constant and the energy diffusion DeD_e might be ill-defined, but vB2τv^2_B\tau diverges. We also compute the diffusion constants for the case that the DC conductivity is finite but in the absence of momentum relaxation.Comment: 30 pages, 2 figure

    Spread of entanglement in a Sachdev-Ye-Kitaev chain

    Full text link
    We study the spread of R\'enyi entropy between two halves of a Sachdev-Ye-Kitaev (SYK) chain of Majorana fermions, prepared in a thermofield double (TFD) state. The SYK chain model is a model of chaotic many-body systems, which describes a one-dimensional lattice of Majorana fermions, with spatially local random quartic interaction. We find that for integer R\'enyi index n>1n>1, the R\'enyi entanglement entropy saturates at a parametrically smaller value than expected. This implies that the TFD state of the SYK chain does not rapidly thermalize, despite being maximally chaotic: instead, it rapidly approaches a prethermal state. We compare our results to the signatures of thermalization observed in other quenches in the SYK model, and to intuition from nearly-AdS2\mathrm{AdS}_2 gravity.Comment: 1+46 pages, 11 figure

    SYK Model, Chaos and Conserved Charge

    Full text link
    We study the SYK model with complex fermions, in the presence of an all-to-all qq-body interaction, with a non-vanishing chemical potential. We find that, in the large qq limit, this model can be solved exactly and the corresponding Lyapunov exponent can be obtained semi-analytically. The resulting Lyapunov exponent is a sensitive function of the chemical potential μ\mu. Even when the coupling JJ, which corresponds to the disorder averaged values of the all to all fermion interaction, is large, values of μ\mu which are exponentially small compared to JJ lead to suppression of the Lyapunov exponent.Comment: 18pages, 4 figures, v2:references and acknowledgment added, typos correcte
    • …
    corecore