28,584 research outputs found

    Reflection Equivariant Quantum Neural Networks for Enhanced Image Classification

    Full text link
    Machine learning is among the most widely anticipated use cases for near-term quantum computers, however there remain significant theoretical and implementation challenges impeding its scale up. In particular, there is an emerging body of work which suggests that generic, data agnostic quantum machine learning (QML) architectures may suffer from severe trainability issues, with the gradient of typical variational parameters vanishing exponentially in the number of qubits. Additionally, the high expressibility of QML models can lead to overfitting on training data and poor generalisation performance. A promising strategy to combat both of these difficulties is to construct models which explicitly respect the symmetries inherent in their data, so-called geometric quantum machine learning (GQML). In this work, we utilise the techniques of GQML for the task of image classification, building new QML models which are equivariant with respect to reflections of the images. We find that these networks are capable of consistently and significantly outperforming generic ansatze on complicated real-world image datasets, bringing high-resolution image classification via quantum computers closer to reality. Our work highlights a potential pathway for the future development and implementation of powerful QML models which directly exploit the symmetries of data.Comment: 7 pages, 6 figure

    Quantum Computing and Nuclear Magnetic Resonance

    Full text link
    Quantum information processing is the use of inherently quantum mechanical phenomena to perform information processing tasks that cannot be achieved using conventional classical information technologies. One famous example is quantum computing, which would permit calculations to be performed that are beyond the reach of any conceivable conventional computer. Initially it appeared that actually building a quantum computer would be extremely difficult, but in the last few years there has been an explosion of interest in the use of techniques adapted from conventional liquid state nuclear magnetic resonance (NMR) experiments to build small quantum computers. After a brief introduction to quantum computing I will review the current state of the art, describe some of the topics of current interest, and assess the long term contribution of NMR studies to the eventual implementation of practical quantum computers capable of solving real computational problems.Comment: 8 pages pdf including 6 figures. Perspectives article commissioned by PhysChemCom

    New Trends in Quantum Computing

    Full text link
    Classical and quantum information are very different. Together they can perform feats that neither could achieve alone, such as quantum computing, quantum cryptography and quantum teleportation. Some of the applications range from helping to preventing spies from reading private communications. Among the tools that will facilitate their implementation, we note quantum purification and quantum error correction. Although some of these ideas are still beyond the grasp of current technology, quantum cryptography has been implemented and the prospects are encouraging for small-scale prototypes of quantum computation devices before the end of the millennium.Comment: 8 pages. Presented at the 13th Symposium on Theoretical Aspects of Computer Science, Grenoble, 22 February 1996. Will appear in the proceedings, Lecture Notes in Computer Science, Springer-Verlag. Standard LaTeX. Requires llncs.sty (included

    NMR Quantum Computation

    Get PDF
    In this article I will describe how NMR techniques may be used to build simple quantum information processing devices, such as small quantum computers, and show how these techniques are related to more conventional NMR experiments.Comment: Pedagogical mini review of NMR QC aimed at NMR folk. Commissioned by Progress in NMR Spectroscopy (in press). 30 pages RevTex including 15 figures (4 low quality postscript images
    corecore