5,043 research outputs found

    Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms

    Get PDF
    Differential privacy is concerned about the prediction quality while measuring the privacy impact on individuals whose information is contained in the data. We consider differentially private risk minimization problems with regularizers that induce structured sparsity. These regularizers are known to be convex but they are often non-differentiable. We analyze the standard differentially private algorithms, such as output perturbation, Frank-Wolfe and objective perturbation. Output perturbation is a differentially private algorithm that is known to perform well for minimizing risks that are strongly convex. Previous works have derived excess risk bounds that are independent of the dimensionality. In this paper, we assume a particular class of convex but non-smooth regularizers that induce structured sparsity and loss functions for generalized linear models. We also consider differentially private Frank-Wolfe algorithms to optimize the dual of the risk minimization problem. We derive excess risk bounds for both these algorithms. Both the bounds depend on the Gaussian width of the unit ball of the dual norm. We also show that objective perturbation of the risk minimization problems is equivalent to the output perturbation of a dual optimization problem. This is the first work that analyzes the dual optimization problems of risk minimization problems in the context of differential privacy

    Adaptive Laplace Mechanism: Differential Privacy Preservation in Deep Learning

    Full text link
    In this paper, we focus on developing a novel mechanism to preserve differential privacy in deep neural networks, such that: (1) The privacy budget consumption is totally independent of the number of training steps; (2) It has the ability to adaptively inject noise into features based on the contribution of each to the output; and (3) It could be applied in a variety of different deep neural networks. To achieve this, we figure out a way to perturb affine transformations of neurons, and loss functions used in deep neural networks. In addition, our mechanism intentionally adds "more noise" into features which are "less relevant" to the model output, and vice-versa. Our theoretical analysis further derives the sensitivities and error bounds of our mechanism. Rigorous experiments conducted on MNIST and CIFAR-10 datasets show that our mechanism is highly effective and outperforms existing solutions.Comment: IEEE ICDM 2017 - regular pape

    Efficient Private ERM for Smooth Objectives

    Full text link
    In this paper, we consider efficient differentially private empirical risk minimization from the viewpoint of optimization algorithms. For strongly convex and smooth objectives, we prove that gradient descent with output perturbation not only achieves nearly optimal utility, but also significantly improves the running time of previous state-of-the-art private optimization algorithms, for both ϵ\epsilon-DP and (ϵ,δ)(\epsilon, \delta)-DP. For non-convex but smooth objectives, we propose an RRPSGD (Random Round Private Stochastic Gradient Descent) algorithm, which provably converges to a stationary point with privacy guarantee. Besides the expected utility bounds, we also provide guarantees in high probability form. Experiments demonstrate that our algorithm consistently outperforms existing method in both utility and running time
    • …
    corecore