616 research outputs found

    A Hybrid Approach to Privacy-Preserving Federated Learning

    Full text link
    Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    Security and privacy aspects of mobile applications for post-surgical care

    Full text link
    Mobile technologies have the potential to improve patient monitoring, medical decision making and in general the efficiency and quality of health delivery. They also pose new security and privacy challenges. The objectives of this work are to (i) Explore and define security and privacy requirements on the example of a post-surgical care application, and (ii) Develop and test a pilot implementation Post-Surgical Care Studies of surgical out- comes indicate that timely treatment of the most common complications in compliance with established post-surgical regiments greatly improve success rates. The goal of our pilot application is to enable physician to optimally synthesize and apply patient directed best medical practices to prevent post-operative complications in an individualized patient/procedure specific fashion. We propose a framework for a secure protocol to enable doctors to check most common complications for their patient during in-hospital post- surgical care. We also implemented our construction and cryptographic protocols as an iPhone application on the iOS using existing cryptographic services and libraries

    Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning

    Get PDF
    Federated learning is a distributed framework for training machine learning models over the data residing at mobile devices, while protecting the privacy of individual users. A major bottleneck in scaling federated learning to a large number of users is the overhead of secure model aggregation across many users. In particular, the overhead of the state-of-the-art protocols for secure model aggregation grows quadratically with the number of users. In this paper, we propose the first secure aggregation framework, named Turbo-Aggregate, that in a network with NN users achieves a secure aggregation overhead of O(NlogN)O(N\log{N}), as opposed to O(N2)O(N^2), while tolerating up to a user dropout rate of 50%50\%. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate that Turbo-Aggregate achieves a total running time that grows almost linear in the number of users, and provides up to 40×40\times speedup over the state-of-the-art protocols with up to N=200N=200 users. Our experiments also demonstrate the impact of model size and bandwidth on the performance of Turbo-Aggregate
    corecore