3 research outputs found

    Differentially Private Empirical Risk Minimization with Input Perturbation

    Full text link
    We propose a novel framework for the differentially private ERM, input perturbation. Existing differentially private ERM implicitly assumed that the data contributors submit their private data to a database expecting that the database invokes a differentially private mechanism for publication of the learned model. In input perturbation, each data contributor independently randomizes her/his data by itself and submits the perturbed data to the database. We show that the input perturbation framework theoretically guarantees that the model learned with the randomized data eventually satisfies differential privacy with the prescribed privacy parameters. At the same time, input perturbation guarantees that local differential privacy is guaranteed to the server. We also show that the excess risk bound of the model learned with input perturbation is O(1/n)O(1/n) under a certain condition, where nn is the sample size. This is the same as the excess risk bound of the state-of-the-art.Comment: 22 pages, 4 figure

    Differentially Private Convex Optimization with Feasibility Guarantees

    Full text link
    This paper develops a novel differentially private framework to solve convex optimization problems with sensitive optimization data and complex physical or operational constraints. Unlike standard noise-additive algorithms, that act primarily on the problem data, objective or solution, and disregard the problem constraints, this framework requires the optimization variables to be a function of the noise and exploits a chance-constrained problem reformulation with formal feasibility guarantees. The noise is calibrated to provide differential privacy for identity and linear queries on the optimization solution. For many applications, including resource allocation problems, the proposed framework provides a trade-off between the expected optimality loss and the variance of optimization results

    Input Perturbation: A New Paradigm between Central and Local Differential Privacy

    Full text link
    Traditionally, there are two models on differential privacy: the central model and the local model. The central model focuses on the machine learning model and the local model focuses on the training data. In this paper, we study the \textit{input perturbation} method in differentially private empirical risk minimization (DP-ERM), preserving privacy of the central model. By adding noise to the original training data and training with the `perturbed data', we achieve (ϵ\epsilon,δ\delta)-differential privacy on the final model, along with some kind of privacy on the original data. We observe that there is an interesting connection between the local model and the central model: the perturbation on the original data causes the perturbation on the gradient, and finally the model parameters. This observation means that our method builds a bridge between local and central model, protecting the data, the gradient and the model simultaneously, which is more superior than previous central methods. Detailed theoretical analysis and experiments show that our method achieves almost the same (or even better) performance as some of the best previous central methods with more protections on privacy, which is an attractive result. Moreover, we extend our method to a more general case: the loss function satisfies the Polyak-Lojasiewicz condition, which is more general than strong convexity, the constraint on the loss function in most previous work
    corecore