3,698 research outputs found

    Fast Differentially Private Matrix Factorization

    Full text link
    Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC

    Privacy Games: Optimal User-Centric Data Obfuscation

    Full text link
    In this paper, we design user-centric obfuscation mechanisms that impose the minimum utility loss for guaranteeing user's privacy. We optimize utility subject to a joint guarantee of differential privacy (indistinguishability) and distortion privacy (inference error). This double shield of protection limits the information leakage through obfuscation mechanism as well as the posterior inference. We show that the privacy achieved through joint differential-distortion mechanisms against optimal attacks is as large as the maximum privacy that can be achieved by either of these mechanisms separately. Their utility cost is also not larger than what either of the differential or distortion mechanisms imposes. We model the optimization problem as a leader-follower game between the designer of obfuscation mechanism and the potential adversary, and design adaptive mechanisms that anticipate and protect against optimal inference algorithms. Thus, the obfuscation mechanism is optimal against any inference algorithm

    Quantifying Differential Privacy in Continuous Data Release under Temporal Correlations

    Get PDF
    Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives to continuously release private data for protecting privacy at each time point (i.e., event-level privacy), which assume that the data at different time points are independent, or that adversaries do not have knowledge of correlation between data. However, continuously generated data tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations. First, we analyze the privacy leakage of a DP mechanism under temporal correlation that can be modeled using Markov Chain. Our analysis reveals that, the event-level privacy loss of a DP mechanism may \textit{increase over time}. We call the unexpected privacy loss \textit{temporal privacy leakage} (TPL). Although TPL may increase over time, we find that its supremum may exist in some cases. Second, we design efficient algorithms for calculating TPL. Third, we propose data releasing mechanisms that convert any existing DP mechanism into one against TPL. Experiments confirm that our approach is efficient and effective.Comment: accepted in TKDE special issue "Best of ICDE 2017". arXiv admin note: substantial text overlap with arXiv:1610.0754
    corecore