5,354 research outputs found

    Differentially private partitioned variational inference

    Full text link
    Learning a privacy-preserving model from sensitive data which are distributed across multiple devices is an increasingly important problem. The problem is often formulated in the federated learning context, with the aim of learning a single global model while keeping the data distributed. Moreover, Bayesian learning is a popular approach for modelling, since it naturally supports reliable uncertainty estimates. However, Bayesian learning is generally intractable even with centralised non-private data and so approximation techniques such as variational inference are a necessity. Variational inference has recently been extended to the non-private federated learning setting via the partitioned variational inference algorithm. For privacy protection, the current gold standard is called differential privacy. Differential privacy guarantees privacy in a strong, mathematically clearly defined sense. In this paper, we present differentially private partitioned variational inference, the first general framework for learning a variational approximation to a Bayesian posterior distribution in the federated learning setting while minimising the number of communication rounds and providing differential privacy guarantees for data subjects. We propose three alternative implementations in the general framework, one based on perturbing local optimisation runs done by individual parties, and two based on perturbing updates to the global model (one using a version of federated averaging, the second one adding virtual parties to the protocol), and compare their properties both theoretically and empirically.Comment: Published in TMLR 04/2023: https://openreview.net/forum?id=55Bcghgic

    Data Analytics with Differential Privacy

    Full text link
    Differential privacy is the state-of-the-art definition for privacy, guaranteeing that any analysis performed on a sensitive dataset leaks no information about the individuals whose data are contained therein. In this thesis, we develop differentially private algorithms to analyze distributed and streaming data. In the distributed model, we consider the particular problem of learning -- in a distributed fashion -- a global model of the data, that can subsequently be used for arbitrary analyses. We build upon PrivBayes, a differentially private method that approximates the high-dimensional distribution of a centralized dataset as a product of low-order distributions, utilizing a Bayesian Network model. We examine three novel approaches to learning a global Bayesian Network from distributed data, while offering the differential privacy guarantee to all local datasets. Our work includes a detailed theoretical analysis of the distributed, differentially private entropy estimator which we use in one of our algorithms, as well as a detailed experimental evaluation, using both synthetic and real-world data. In the streaming model, we focus on the problem of estimating the density of a stream of users, which expresses the fraction of all users that actually appear in the stream. We offer one of the strongest privacy guarantees for the streaming model, user-level pan-privacy, which ensures that the privacy of any user is protected, even against an adversary that observes the internal state of the algorithm. We provide a detailed analysis of an existing, sampling-based algorithm for the problem and propose two novel modifications that significantly improve it, both theoretically and experimentally, by optimally using all the allocated "privacy budget."Comment: Diploma Thesis, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 201

    Fast Differentially Private Matrix Factorization

    Full text link
    Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC
    corecore