5 research outputs found

    Differential evolution as the global optimization technique and its application to structural optimization

    Get PDF
    金沢大学理工研究域機械工学系In this paper, the basic characteristics of the differential evolution (DE) are examined. Thus, one is the meta-heuristics, and the other is the global optimization technique. It is said that DE is the global optimization technique, and also belongs to the meta-heuristics. Indeed, DE can find the global minimum through numerical experiments. However, there are no proofs and useful investigations with regard to such comments. In this paper, the DE is compared with the generalized random tunneling algorithm (GRTA) and the particle swarm optimization (PSO) that are the global optimization techniques for continuous design variables. Through the examinations, some common characteristics as the global optimization technique are clarified in this paper. Through benchmark test problems including structural optimization problems, the search ability of DE as the global optimization technique is examined. © 2011 Elsevier B.V. All rights reserved

    Enhanced Differential Evolution Based on Adaptive Mutation and Wrapper Local Search Strategies for Global Optimization Problems

    Get PDF
    AbstractDifferential evolution (DE) is a simple, powerful optimization algorithm, which has been widely used in many areas. However, the choices of the best mutation and search strategies are difficult for the specific issues. To alleviate these drawbacks and enhance the performance of DE, in this paper, the hybrid framework based on the adaptive mutation and Wrapper Local Search (WLS) schemes, is proposed to improve searching ability to efficiently guide the evolution of the population toward the global optimum. Furthermore, the effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA) that we previously published is applied to always produce feasible candidate solutions for solving the Flexible Job-shop Scheduling Problem (FJSP). Experiments were conducted on comprehensive set of complex benchmarks including the unimodal, multimodal and hybrid composition function, to validate performance of the proposed method and to compare with other state-of-the art DE variants such as jDE, JADE, MDE_pBX etc. Meanwhile, the hybrid DE model incorporating PSOMA is used to solve different representative instances based on practical data for multi-objective FJSP verifications. Simulation results indicate that the proposed method performs better for the majority of the single-objective scalable benchmark functions in terms of the solution accuracy and convergence rate. In addition, the wide range of Pareto-optimal solutions and more Gantt chart decision-makings can be provided for the multi-objective FJSP combinatorial optimizations

    Study on optimal impact damper using collision of vibrators

    Get PDF
    In this paper, we propose an impact damper which consists of multiple vibrators installed on a main structure and dissipates the vibrational energy by collisions between the vibrators. Transient vibration of the main system subject to an impact rapidly converges to zero by the impact damper. DE (Differential Evolution) method which is one of the optimization methods is employed to determine mass and spring constant of the every vibrators to maximize damping effect. We discuss the effect of a coefficient of restitution of vibrators, a ratio of total mass of the vibrators to the main structure mass and the number of the vibrators on the damping performance. The damping effect of the impact damper with three vibrators is demonstrated experimentally. © 2015 Elsevier Ltd.Embargo Period 24 month
    corecore