2,420 research outputs found

    A semiclassical Egorov theorem and quantum ergodicity for matrix valued operators

    Full text link
    We study the semiclassical time evolution of observables given by matrix valued pseudodifferential operators and construct a decomposition of the Hilbert space L^2(\rz^d)\otimes\kz^n into a finite number of almost invariant subspaces. For a certain class of observables, that is preserved by the time evolution, we prove an Egorov theorem. We then associate with each almost invariant subspace of L^2(\rz^d)\otimes\kz^n a classical system on a product phase space \TRd\times\cO, where \cO is a compact symplectic manifold on which the classical counterpart of the matrix degrees of freedom is represented. For the projections of eigenvectors of the quantum Hamiltonian to the almost invariant subspaces we finally prove quantum ergodicity to hold, if the associated classical systems are ergodic

    Optimal control of multiscale systems using reduced-order models

    Get PDF
    We study optimal control of diffusions with slow and fast variables and address a question raised by practitioners: is it possible to first eliminate the fast variables before solving the optimal control problem and then use the optimal control computed from the reduced-order model to control the original, high-dimensional system? The strategy "first reduce, then optimize"--rather than "first optimize, then reduce"--is motivated by the fact that solving optimal control problems for high-dimensional multiscale systems is numerically challenging and often computationally prohibitive. We state sufficient and necessary conditions, under which the "first reduce, then control" strategy can be employed and discuss when it should be avoided. We further give numerical examples that illustrate the "first reduce, then optmize" approach and discuss possible pitfalls

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances
    corecore